AGRIS — международная информационная система по сельскохозяйственным наукам и технологиям

Effect of treatment with paclobutrazol on growth of some citrus rootstocks under salt stress conditions

2023

Anas Naeem Kiwan


Библиографическая информация
Издатель
Damascus University . Faculty of agricultural engineering
Другие темы
مخرفش; الملوحة; أصل; الحمضيات; بادرات; ياماسيترانج; الباكلوبيوترازول; Rootstock; Yuma citrange; C. jambhiri
Язык
арабский
Примечание
References 1- Abd El‐Samad, H. M. and Shaddad, M. A. K. (1996). Comparative effect of sodium carbonate, sodium sulphate, and sodium chloride on the growth and related metabolic activities of pea plants. Journal of plant nutrition, 19(5), 717-728. 2- Abrol, I. P. (1986). Salt affected soils: an overview. In: Approaches for incorporating drought and salinity resistance in crop plants. (Eds, V. L. Chopra and R. S. Paroda), pp. 1-23 oxford and IBH publishing Co. pvt. New Delhi. 3- Ahmade, E. (2019). Effect of pinching and paclobutrazol on growth and flowering of garland chrysanthemum (Chrysanthemum coronarium L.). Syrian Journal of Agricultural Research, 6(1), 409-419. 4- Alcazar, R., Bitrián, M., Bartels, D., Koncz, C., Altabella, T. and Tiburcio, AF. (2011). Polyamine metabolic canalization in response to drought stress in Arabidopsis and the resurrection plant Craterostigma plantagineum. Plant Signal Behav 6: 243-250. 5- Almansa, M.S., Hernandez, J.A., Jimenez, A., Botella, M.A. and sevilla F. (2002). Effect of salt stress on the superoxide dismutase activity in leaves of Citrus limonumin different rootstock–scion combinations. Biologiaplantarum. 45(4) :545-549. 6- Al-Yassin, Adnan. (2005). Adverse effects of Salinity on Citrus. Int.J.Agric.Biol.7:668-680. 7- Anjum, M. A. (2008). Effect of Nacl concentrations in irrigation water on growth and polyamine metabolism in two citrus rootstocks with different levels of salinity tolerance. ActaPhysiol.Plant. 30:43-52. 8- Anjum, M. A. (2010). Response of Cleopatra mandarin seedlings to polyamine-biosynthesis inhibitor under salt stress. Actaphysiol plant. 32:951-959. 9- Anjum, M. A., Abid, M. and Naveed, F. (2000). Effect of Soil Salinity on the Performance of Some Citrus Rootstocks at Seedling Stage. Pakistan Journal of Biological Sciences.3(12):1998-2000. 10- Anjum, M. A., Abid, M. and Naveed, F. (2001). Evaluation of citrus rootstocks for salinity tolerance at seedling stage. Int. J. Agric. Biol., 3, 1-4.11- Atkinson, D. and Chauhun, J.S. (1987). The effect of paclobutrazol on the water use of fruit plants at two temperatures. J. Hort. Sci. 62:421-426. 12- Atkinson, D. and Crisp, C.M. (1983). The effect of some plant growth regulators and herbicides on root system morphology and activity. Acta Hort. 136:21–28. 13- Ayvaci, u., Koc, F. N., Cetinkaya, H. & Dinler, B. S. (2023). Treatment with Auxin and Paclobutrazol Mediates Ros Regulation, Antioxidant Defence System and Cell Wall Response in Salt Treated Soybean. https://doi.org/10.21203/rs.3.rs-2835516/v1. 14- Balal, R. M., Ashraf, M. Y., Khan, M. M., Jaskani, M. J., and Ashfaq, M. (2011). Influence of salt stress on growth and biochemical parameters of citrus rootstocks. Pakistan Journal of Botany, 43(4), 2135-2141. 15- Ball, Vic. (1987). Viewpoint. Grower Talks 51(3):12, July 1987. 16- Banuls, J., Legaz, F. and Primo-Millo, E. (1991). Salinity –Calcium interaction on growth and ionic concentration of Citrus plants. Plant and Soil.133:39-46. 17- Bates, L. S., Waldren, R. A. and Teare, I. D. (1973). Rapid determination of free proline for water-stress studies. Plant and soil, 39, 205-207. 18- Ben-Hayyim, G., & Moore, G. A. (2007). Recent advances in breeding citrus for drought and saline stress tolerance. Advances in molecular breeding toward drought and salt tolerant crops, 627-642. 19- Bernstein, L. (1975). Effects of salinity and sodicity on plant growth. Annual review of phytopathology, 13(1), 295-312. 20- Bernstein, L. (1981). Effects of salinity and soil water regime on crop yields (Ed D. Yaron). U.S.A. 432 pp. 21- Bose, S., Yadav, R.K., Mishra, S., Sangwan, R.S., Singh, A.K., Mishra, B., Srivastava, A.K. and Sangwan N.S. (2013). Effect of gibberellic acid and calliterpenone on plant growth attributes, trichomes, essential oil biosynthesis and pathway gene expression in differential manner in Mentha arvensis L. Plant Physiol. Biochem. 66, 150-158. 22- Bowling, D. J. F. (1976). Uptake of ions by plant roots. Chapman and Hall, London. p. 159.23- Cameron, J.W. and Forst, H.B. (1968). Genetics, breeding and nucellar embryony. In: Reuther, W., Bachelor, L.D. and Webber H.J. (eds.) The citrus industry. Vol II. University of California press, Berkely. Cliff: 325-370. 24- Casey, H. E. (1972). Salinity problems in arid lands irrigation: A literature review and selected bibliography. 25- Castle, W. S. (1987). Citrus rootstocks. P.361-399. In: Rom R. and Carlson R. (eds.). Rootstocks for fruit crops. J. Wiley and Sons, Inc., NewYork, NY. 26- Cavatte, R., Salomão, L.C.C., Siqueira, D.L., Peternelli, L.A. and Cavatte P.C. (2012). Redução do porte e produção das bananeiras ‘Prata-Anã’ e ‘FHIA-01’tratadas com paclobutrazol. Rev. Bras. Frutic. 34(2), 356-365. Doi: http://dx.doi.org/10.1590/S0100-29452012000200007 27- Central Bureau of Statistics. (2021). CBS. Damascus, Syria Arab Republic. 28- Chaney, W. R. (2005). Growth retardants: A promising tool for managing urban trees. Purdue Extension. FNR. 252-W: 1-5. 29- Chang, S., Wu, Z., Zeng, Q., Zhang, J., Sun, W., Qiao, L. and Shu, H. (2019). The effects for delaying banana seedling growth through spraying growing retardants on stem apex. Am. J. Plant Sci. 10(05), 813. Doi: 10.4236/ajps.2019.105059 30- Chatzissavvidis, Ch., Antonopoulou, Ch., Therios, I. and Dimassi, K. (2014). Responses of trifoliate orange (Poncirus trifoliata (L.) Raf.) To continuously and gradually increasing nacl concentration. Acta Botanica Croatica, Vol. 73, No°. 1, 275 -280. 31- Chele, K.H., Tinte, M.M., Piater, L.A., Dubery, I.A. and Tugizimana, F. (2021). Soil salinity, a serious environmental issue and plant responses: A metabolomics perspective. Metabolites 11, 724. https://doi.org/10.3390/metabo11110724 32- Corazza-Nunes, M. J., Machado, M.G., Nunes, W. M. C., Cristofani, M. and Targon, M. (2002). Assesment of genetic variability in grapefruits (Citrus paradise) and pummelos (C. Maxima) using RAPD and SSR markers. Euphytica. 126:169-176. 33- David, M. O. and Nilsen E. T. (2000). The physiology of plant under stress. Soil and Biotic Factors. Wiley and Sons. USA.34- Davis, T. D., Sankhla, N. and Upadhyaya, A. (1986). Paclobutrazol: A promising plant growth regulator. In S. S. Purohit (Ed.), Hormonal regulation of plant growth and development (pp.311–332). Bikaner: Agrobotanical Publishers. 35- Davis, T. D., Steffens, G. L. and Sankhla, N. (1988). Triazol plant growth regulators. Horticultural Review, 10, 151–188. 36- De Siqueira, D. L. and Salomão, L. C. C. (2017). Effects of paclobutrazol on growth and flowering of citrus. Citrus Research & Technology, 23(2), 355-369. 37- Dobiose, M.K., Grilles, K.A., Hamiltor, J.K., Rebers, D.A. and Smith, F. (1956). Calorimetric method for determination of sugars and substances. Anal. Chem., 28: 350 – 356. 38- Dobranszki, J. and Mendler-Drienyovszki, N. (2014). Cytokinin-induced changes in the chlorophyll content and fluorescence of in vitro apple leaves. Journal of Plant Physiology, 171, 1472–1478. 39- Dudal, R. (1976). Inventory of major soils of the word with special reference to mineral stress hazardes. Proceedings workshop on “plant adaptation to mineral stress in proplem soils” Beltsiville. 40- El-Desouky, S. A. and Atawia, A. A. R. (1998). Growth performance of some citrus rootstocks under saline conditions, Alex J Agric Res, 43: 231-254. 41- El-Gabaly, M. M. (1972). Reclamation and management of salt affected soils. Symposium on new developments in the field of salt-affected soils, Egypt, 4-7 december 1972, General organization for gouvemment printing offices. 42- Engler, A. (1931). Rutaceae. In: Reuther, W., Webber, HJ. and Bachelor, L.D. eds., The citrus industry. Vol I. University of California Press, Berkely. 301. 43- Epstein, E. (1976). Genetic potentials for solving problems of soil mineral stres: adaptation of crops to salinity. In Plant adaptation to mineral stress in problem soils. Proceedings of a workshop held at the National Agricultural Library, Beltsville, Maryland, November 22-23, 1976 (pp. 73-82). Cornell Univ. Agricultural Experiment Station.44- Epstein, E., Norlyn, J. D., Rush, D. W., Kingsbury, R. W., Kelley, D. B., Cunningham, G. A. and Wrona, A. F. (1980). Saline culture of crops: a genetic approach. Science, 210(4468), 399-404. 45- FAO. (2021). Food and Agriculture Organizations of the United Nations [Internet]. Available from: http://www.fao.org/faostat/en/#data. 46- Fargro, L. (2009). Plant growth regular Bonzi (book). Commercial label. 47- Farooq, T. and Hameed, A. (2021). Advances in Triazole Chemistry. Chapter 7 - Triazole-Based Plant Growth-Regulating Agents. Elsevier. Tahir Farooq. P: 169-185. https://doi.org/10.1016/B978-0-12-817113-4.00008-1. 48- Fletcher, R. A. and Hofstra, G. (1990). Improvement of uniconazoleinduced protection in wheat seedlings. Journal of Plant Growth Regulation, 9, 207–212. 49- Fletcher, R. A., Gilley, A., Sankhla, N. and Davis, T. D. (2000). Triazoles as plant growth regulators and stress protectants. Horticultural Reviews, 24, 55–138. 50- Flowers, T. J., Garcia, A., Koyama, M. and Yeo, A. R. (1997). Breeding for salt tolerance in crop plants—the role of molecular biology. Acta Physiologiae Plantarum, 19, 427-433. 51- Foyer, C. H. and Noctor, G. (2000). Tansley review no. 112. New Phytologist, 146, 359–388. 52- GhotbAbadi, F.S., Mostafvi, M., Eboutaebi, A., Samavat, S. and Ebadi, A. (2010). Biomass Accumulation and Proline Content of Six Citrus Rootsocks as Influenced by Long-Term Salinity. Research Journal of Environmental Sciences. 4 (2):158-165. 53- Gimeno, V., Syvertsen, J. P., Nieves, M., Simon, l., Martinez, V. and Garcia-Sanchez, F. (2009). Additional nitrogen fertilization affects salt tolerance of lemon trees on different rootstocks. Scientia Horticultur. 121:298-305. 54- Gimeno, Vicent, James, P. Syvertsen, Francisco, R., Veciente, M. and Garcia-Sanchez, F. (2010). Growth and Mineral Nutrition are effected by Substrate type and Salt stress in Seedlings of Two Contrasting Citrus Rootstocks. Journal of Plant Nutrition, 33:1435-1447. 55- Gratten, S. R. and Grieve, C. M. (1999). Mineral nutrient acquisition and response by plant growth in saline environments. In: Handbook of plantcrop stress.2ndedition (Ed.M. Passaraki) Marccl Dekker Inc. New York. P.P.203- 229. 56- Gucci, R., Lombardini, L., & Tattini, M. (1997). Analysis of leaf water relations in leaves of two olive (Olea europaea) cultivars differing in tolerance to salinity. Tree physiology, 17(1), 13-21. 57- Gueta-Dahan, Y., Yaniv, Z., Zilinskas, B. A., and Ben-Hayyim, G. (1997). Salt and oxidative stress: similar and specific responses and their relation to salt tolerance in Citrus. Planta, 203(4), 460–469. 58- Harborne, J.B. (1973). Phytochemical methods. Chapman & Hall, New York.pp. 1- 288. 59- Hardy, S. (2004). Growing lemons in Australia–a production manual. New South Wales, Australia: NSW Department of Primary Industries. 60- Hepaksoy, S. (2000). Effect of Salinity on Citrus. J.Aegean Agricultural Research Institute.10(1):52-72. 61- Holland, D., Ben-Hayyim, G., Faltin, Z., Camoin, L., Strosberg, A. D., and Eshdat, Y. (1993). Molecular characterization of salt-stress-associated protein in citrus: protein and cdna sequence homology to mammalian glutathione peroxidases. Plant Molecular Biology, 21(5), 923–927. 62- Hoopkins, W. G. and Muner, N. P. (2008). Introduction to plant physiology. 4th edition. Wiley and Sons. USA. 63- Hussain, S., Luro, F., Costantino, G., Ollitrault, P. and Morillon, R. (2012). Physiological analysis of salt stress behaviour of citrus species and genera: Low chloride accumulation as an indicator of salt tolerance. South African Journal of Botany, Vol. 81, 103 -112. 64- Hutchinson, D. J. (1977). Influence of rootstock on the performance of ‘Valencia’sweet orange. In International Citrus Congress (Vol. 2, pp. 523-525). 65- International Bureau of Weights and Measures, Taylor, B. N., & Thompson, A. (2001). The international system of units (SI). Gaithersburg, MA, USA: US Department of Commerce, Technology Administration, National Institute of Standards and Technology. 66- Ismail, S. M. (2013). Effect of Brackish water on Citrus (Citrus aurantifoliaL.) Growth and soil chemical properties in a Newlly Established orchard. Journal of Applied Sciences Research, 9(1):341-351.67- Jackson, M. L. (1985). Soil Chemical analysis- advanced course, 2nd edn. M. L. Jackson madison, wI. 68- Jaleel, C. A., Gopi, R., Manivannan P. and Panneerselvam R. (2006). Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. To paclobutrazol treatment under salinity. Acta Physiol Plant. 29:205–209. 69- Jaleel, C. A., Gopi, R., Manivannan, P. and Panneerselvam, R. (2007). Responses of antioxidant defense system of Catharanthus roseus (L.) G. Don. to paclobutrazol treatment under salinity. Acta Physiologiae Plantarum, 29, 205–209. 70- Jaskani, M. J., Abbas, H., Khan, M. M., Shahzad, U. and Hussain, Z. (2006). Morphological description of three potential citrus rootstocks. Pakistan Journal of Botany, 38(2), 311. 71- Joolka, N. K., Singh, J. P. and Khera, A. P. (1980). Effect of saline irrigation water on the growth of sweet orange plants (Citrus sinensis Osbeck), Haryana J Hort Sci, 9: 125-128. 72- Julkowska, M.M. and Testerink, C. (2015). Tuning plant signaling and growth to survive salt. Trends Plant Sci. 20, 586-594. 73- Jungklang, J. and Saengnil, K. (2012). Effect of paclobutrazol on Patumma cv. Chiang Mai Pink under water stress. Songklanakarin J. Sci.Technol. 34, 361–366. 74- Jungklang, J., Saengnil, K. and Uthaibutra, J. (2015). Effects of water-deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep. cv. Chiang Mai Pink. Saudi Journal of Biological Sciences, https://doi.org/10.1016/j.sjbs.2015.09.017 75- Jungklang, J., Saengnil, K. and Uthaibutra, J. (2017). Effects of water-deficit stress and paclobutrazol on growth, relative water content, electrolyte leakage, proline content and some antioxidant changes in Curcuma alismatifolia Gagnep. cv. Chiang Mai Pink. Saudi Journal of Biological Sciences, 24(7), 1505-1512. 76- Kahlaoui, B., Hachicha, M., Misle, E., Fidalgo, F. and Teixeira, J. (2018). Physiological and biochemical responses to the exogenous application of proline of tomato plants irrigated with saline water. J. Saudi Soc. Agric. Sci. 17, 17-23.77- Kamountsis, A. P. and Sereli, C. (1999). Paclobutrazol affects growth and flower bud production in gardenia under different light regimes. Hort Science, 34, 674–675. 78- Khalil, H. A., Eissa, A. M., El-Shazly, S. M., and Nasr, A. M. A. (2011). Improved growth of salinity-stressed citrus after inoculation with mycorrhizal fungi. Scientia Horticulturae, 130(3), 624-632. 79- Khoshbakht, D., Ramin, A. A., and Baninasab, B. (2014). Citrus rootstocks response to salinity: Physio-biochemical parameters changes. Research Journal of Environmental Sciences, 8(1), 29. 80- Kishorekumar, A., Jaleel, C. A., Manivannan, P., Sankar, B., Sridharan, R. and Panneerselvam, R. (2007). Comparative effects of different triazole compounds on growth, photosynthetic pigments and carbohydrate metabolism of Solenostemon rotundifolius. Colloids and surfaces. B, Biointerfaces, 60, 207–212. 81- Ko, D., Kang, J., Kiba, T., Park, J., Kojima, M., Do, J. and Song, W.-Y. (2014). Arabidopsis ABCG14 is essential for the root-to-shoot translocation of cytokinin. Proceedings of the National Academy of Sciences, 111, 7150–7155. 82- Kostopoulou, Z., Therios, I., Roumeliotis, E., Kanellis, A.K. and Molassiotis, A. (2015). Melatonin combined with ascorbic acid provides salt adaptation in Citrus aurantium L. Seedlings. Plant Physiol. Biochem. 86, 155-165. 83- Ladaniya, M. (2008). Citrus Fruit, Technology and Evalution, Academic Press.15. Laskar, M.A.,M. Hynniewta and C.S.Rao.2009.In vitro progenitor species. 1nd J. Biotechnol 8:311-316. 84- Laermann, H. T., Brielmaier-Liebetanz U. and Lehnst M. (1992). Investigations on the behaviour of the growth regulator Bonzi in the composting of ornamental plants. Nachrichtenblatt des Deutschen Pflanzenschutzdienstes. 43(12): 261-264. (C.F. Nasr, M. N. (1995). Alex. J. Agric. Res. 40 (3): 261-79). 85- Le Roux, S. and Barry, G. H. (2010). Vegetative Growth Responses of Citrus Nursery Trees to Various Growth Retardants. Horttechnology. 20(1), 197-201. 86- Lea-Cox, J. D. and Syvertsen, J. P. (1993). Salinity reduces water use and Nitrate-N-use efficiency of citrus, Ann Bot, 72: 47-54.87- Lee, M. H., Cho, E. J., Wi, S. G., Bae, H., Kim, J. E., Cho, J. Y. and Chung, B. Y. (2013). Divergences in morphological changes and antioxidant responses in salt-tolerant and salt-sensitive rice seedlings after salt stress. Plant Physiology and Biochemistry, 70, 325–335. 88- Levy, Y., and Syvertsen, J.P. (2004). Irrigation water quality and Salinity effects in Citrus trees. Horticultural Reviews. 30:37-82. 89- Li, C., Wang, P., Wei, Z.W., Liang, D., Liu, C.H., Yin, L.H., Jia, D.F., Fu, M.Y. and Ma, F.W. (2012). The mitigation effects of exogenous melatonin on salinity-induced stress in Malus hupehensis. J. Pineal Res. 53, 298-306. 90- Lichtenthaler, H. K., & Wellburn, A. R. (1983). Determinations of total carotenoids and chlorophylls a and b of leaf extracts in different solvents. 91- López-Climent, M. F., Arbona, V., Pérez-Clemente, R. M., and Gómez-Cadenas, A. (2008). Relationship between salt tolerance and photosynthetic machinery performance in citrus. Environmental and Experimental Botany, 62(2), 176–184. 92- Maas, E. V. and Hoffman G. J. (1977). Crop salt tolerance current assessment. J. Irr. and Drainage Division, ASCE 103 (IR2): 115-134. 93- Machado, R.M.A. and Serralheiro, R.P. (2017). Soil salinity: Effect on vegetable crop growth. Management practices to prevent and mitigate soil salinization. Horticulturae 2017, 3, 30. 94- Manivannan, P., Jaleel, C. A., Kishorekumar, A., Sankar, B., Somasundaram, R. and Panneerselvam, R. (2008). Protection of Vigna unguiculata (L.) Walp. plants from salt stress by paclobutrazol. Colloids and surfaces. B, Biointerfaces, 61, 315–318. 95- Martin, G. C., Yoshikawa, F. and LaRue. J.H. (1987). Effect of soil applications of paclobutrazol on vegetative growth, pruning time, flowering, yield, and quality of ‘Flavorcrest’ peach. J. Amer. Soc. Hort. Sci. 112:915-921. 96- Mittler, R. (2002). Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science, 7, 405–410. 97- Mobayen, R. G. and Milthorpe, F. L. (1980). Response of seedlings of three citrus-rootstock cultivars to salinity, Aust J Agric Res, 31: 117-124.98- Monselise, S. P. (1986). growth retardation of shoot and peel growth in citrus by paclobutrazol. Acta Horticulturae. 179:529–536. 99- Munns, R. and Tester, M. (2008). Mechanisms of salinity tolerance. Annu. Rev. Plant Biol., 59, 651-681. 100- Murkute, A., Sharma, S. and Singh, S. (2005). Citrus in terms of soil and water salinity. Journal of Scientific & Industrial Research. Vol. 64, Jpp. 393-402. 101- Nakamura, M. (1934). Cytological studies in the genus Citrus. II. The chromosome number, pollen sterility and the formation of abnormal pollen tetrads stud. Citrol. 6:162-178. 102- Navarro, J. M., Pérez-Tornero, O., and Morte, A. (2014). Alleviation of salt stress in citrus seedlings inoculated with arbuscular mycorrhizal fungi depends on the rootstock salt tolerance. Journal of Plant Physiology, 171(1), 76-85. 103- Nieves, M., Cerda, A. and Botella, M. (1991). Salt tolerance of two lemon scions measured by leaf chloride and sodium accumulation, J Plant Nutrition, 14: 623-636. 104- Nieves, M., Martinez, V., Cerda, A. and Guillen, M. G. (1990). Yield and mineral composition of Verna lemon trees as affected by salinity and rootstock combination, J Hort Sci, 65:359-366. 105- Pan, S., Rasul, F., Li, W., Tian, H., Mo, Z., Duan, M. and Tang, X. (2013). Roles of plant growth regulators on yield, grain qualities and antioxidant enzyme activities in super hybrid rice (Oryza sativa L.). Rice, 6:9. doi: 10.1186/1939-8433-6-9 106- Parida, A.K. and Das, A.B. (2005). Salt tolerance and salinity effects on plants: a review. Ecotox. Environ. Safe. 60, 324-349. 107- Patel, S.K., Dubey, A.K., Srivastav, M., Singhl, A.K., Dahuja, A. and Pandey, R.N. (2011). Effect of Nacl in the irrigation water on growth, antioxidant enzyme activities, and nutrient uptake in five citrus rootstocks. The journal of Horticultural Science & Biotechnology. 86(2) :189-195. 108- Patil, V. K. and Bhambota, J. R. (1978). Growth behavior of certain citrus rootstocks as influenced by different levels of salinity in soil, Haryana J Hort Sci, 7: 150.109- Peech, M., Alexander, L. T., Dean, L. A., and Reed, J. F. (1947). Methods of soil analysis for soil fertility investigations.757(4): 25, Publisher: U.S. Dept. of Agriculture, Washington, D.C. 110- Pillsbury, A. (1972). Is California's irrigated agriculture permanent?. California Agriculture, 26(6), 2-2. 111- Plaut, Z., Edelstein, M. and Ben-Hur, M. (2013). Overcoming Salinity Barriers to crop production Using Traditional Methods. Crited Review in plant Science. 32:250-291 112- Purohit, S. S. (1986). Hormonal Regulation of Plant Growth and Development, Vol. III. Agro. Botanical Publishers (India). 113- Qureshi, M.I., Abdin, M.Z., Ahmad, J. and Iqbal, M. (2013). Effect of long-term salinity on cellular antioxidants, compatible solute and fatty acid profile of Sweet Annie (Artemisia annua L.). Phytochemistry 95, 215-223. 114- Raheja, P. C. (1966). Aridity and salinity: a survey of soils and land use. Salinity and Aridity: New Approaches to Old Problems, 43-127. 115- Rehman, A., Ashraf, M. and Naveed, F. (2011). Growth Performance of JattiKhatti and GadaDehi Citrus Rootstocks growth with saline water irrigation. Int.J. Agric.Appl.Sci. Vol.3(2):51-59. 116- Ren, C.G., Kong, C.C. and Xie, Z.H. (2018). Role of abscisic acid in strigolactone-induced salt stress tolerance in arbuscular mycorrhizal Sesbania cannabina seedlings. BMC Plant Biol. 18,74. 117- Reuter, D. J. and J. B. Robinson. (1997). Plant analysis: an interpretation manual (2nd edition). CSIRO publ., Australia. 118- Reuther, W., Batchelor, L. D. and Webber, H. J. (1967). The Citrus Industry. Vol. I. History, World Distribution, Botany and Varieties. 119- Reynodlls, M. P., Mujeeb-Kazi, A. and Sawkins, M. (2005). Prospects for utilizing plant adaptive mechanisms to improve Wheat and other crops in drought and Salinity Prone environments. Annual Applied Biology. 146:239-259. 120- Rieger, M. and Scalabrelli, G. (1990). Paclobutrazol, Root Growth, Hydraulic Conductivity, and Nutrient Uptake of Nemaguard'Peach. HortScience, 25(1), 95-98.121- Roussos, P. A., Gasparatos, D., Kyriakou, C., Tsichli, K., Tsantili, E., and Haidouti, C. (2013). Growth, nutrient status, and biochemical changes of sour orange plants subjected to sodium chloride stress. Communications in soil science and plant analysis, 44(1-4), 805-816. 122- Ruffino, A. M. C., Rosa, M., Hilal, M., Gonzalez, J. A. and Prado, F. E. (2009). The role of cotyledon metabolism in the establishment of quinoa (Chenopodium quinoa) seedlings growing under salinity. Plant and Soil, 326, 213–224. 123- Ruiz, D., Martinez, V. and Cerda, A. (1997). Citrus response to salinity: growth and nutrient uptake. Tree- physiology.17(3):141-150. 124- Ruiz-Carrasco, K., Antognoni, F., Coulibaly, A. K., Lizardi, S., Covarrubias, A., Martinez, E. A., Molina-Montenegro, M. A., Biondi, S., Zurita-Silva, A. (2011). Variation in salinity tolerance of four lowland genotypes of quinoa (Chenopodium quinoa Willd.) as assessed by growth, physiological traits, and sodium transporter gene expression. Plant Physiology and Biochemistry, 49, 1333–1341. 125- Sah, S.K., Reddy, K.R. and Li, J. (2016). Abscisic acid and abiotic stress tolerance in crop plants. Front. Plant Sci. 7, 571. 126- Sanchez, A. C. and J. C. Jeffrey. (1996). Managing saline and sodic soils for producing horticultural crops. Hort Technology 6: 99-107. 127- Sankar, B., Gopinathan, P., Karthishwaran, K. and Somasundaram, R. (2016). Photosynthetic pigment content alterations in Arachis hypogaea L. in relation to varied irrigation levels with growth hormone and triazoles. Journal of Ecobiotechnology, 5, 7–13. 128- Sankar, B., Jaleel, C. A., Manivannan, P., Kishorekumar, A., Somasundaram, R. & Panneerselvam, R. (2007). Effect of paclobutrazol on water stress amelioration through antioxidants and free radical scavenging enzymes in Arachis hypogaea L. Colloids and Surfaces B: Biointerfaces, 60(2), 229-235. 129- Santos, S. A.P., Santos, C., Silva, S., Pinto, G., Laura, M., Torres, L.M. and Nogueira, A. J. A. (2013). The effect of sooty mold on fluorescence and gas exchange properties of olive tree. Turk. J. Biol. 37:620-628 130- Scora, R.W. (1988). Biochemistry, taxonomy and evolution of modern cultivated Citrus.Proc Int Soc Citricult. 1:277-289.131- Seday, U., Gulsen, O., Uzun, A. Y. D. I. N., & Toprak, G. Ü. L. E. R. (2014). Response of citrus rootstocks to different salinity levels for morphological and antioxidative enzyme activites. JAPS: Journal of Animal & Plant Sciences, 24(2). 132- Shalhevet, J. and Levy, Y. (1990). Citrus trees, in Irrigation of Agricultural Crops, edited by A R Stewrt & D R Nielsen, Agrnomy Monograph, 3: 951-986. 133- Shannon, M. C. (1979). In quest of rapid screening techniques for plant salt tolerance, Hort Sci, 14: 587-589. 134- Sharma, D. K., Dubey, A. K., Srivastav, M., Singh, A. K., Pandey, R. N. & Dahuja, A. (2013). Effect of paclobutrazol and putrescine on antioxidant enzymes activity and nutrients content in salt tolerant citrus rootstock sour orange under sodium chloride stress. Journal of plant nutrition, 36(11), 1765-1779. 135- Sharma, D. K., Dubey, A. K., Srivastav, M., Singh, A. K., Sairam, R. K., Pandey, R. N., Dahuja, A. and Kaur, Ch. (2011). Effect of Putrescine and Paclobutrazol on Growth, Physiochemical Parameters, and Nutrient Acquisition of Salt-sensitive Citrus Rootstock Karna khatta (Citrus karna Raf.) Under nacl Stress. Plant Growth Regul. 30:301–311. 136- Sherif, H. M. and Asaad, S. A. (2014). Effect of some plant growth retardants on vegetative growth, spurs and fruiting of ‘Le-Conte’ pear trees. British Journal of Applied Science & Technology.4(26): 3785. 137- Siqueira, D. L. D., Cecon, P. R. & Salomão, L. C. C. (2008). Desenvolvimento do limoeiro'Volkameriano'(Citrus volkameriana Pasq.) submetido a doses de paclobutrazol e ácido giberélico. Revista Brasileira de Fruticultura, 30, 764-768. 138- Sopher, C. R., Krol, M., Huner, N. P., Moore, A. E. and Fletcher, R. A. (1999). Chloroplastic changes associated with paclobutrazol-induced stress protection in maize seedlings. Canadian Journal of Botany, 77, 279–290. 139- Sousa, E. M. R., Almeida, L. S., de Oliveira Sousa, A. R., de Carvalho Silva, M., da Silva Ledo, C. A., de Almeida, A. A. F., Costa, M.G.C., Coelho Filho, M.A., dos Santos Soares Filho, W. and da Silva Gesteira, A. (2018). Drought tolerance of a microcitrangemonia when treated with paclobutrazol and exposed to different water conditions. Scientia Horticulturae, 238, 75-82.140- Swingle, T. W. (1967). The Botany of Citrus and Its Wild Relatives- The Citrus Industry Vol 1, Chap. 3, 190-430. 141- Syvertsen, J.P., Zablotowiez, R.M. and Smith, M.L. (1983). Soil temperature and flooding effects on two species of citrus. Plant growth and hydraulic conductivity. Plant and Soil. 72: 3-12. 142- Taize, L. and Zeiger, E. (2006). Plant physiology 4th edition sinauer Assuciates.inc.USA. 143- Talla, S. K., Panigrahy, M., Kappara, S., Nirosha, P., Neelamraju, S. and Ramanan, R. (2016). Cytokinin delays dark-induced senescence in rice by maintaining the chlorophyll cycle and photosynthetic complexes. Journal of Experimental Botany, 67, 1839–1851. 144- Taylor, S., Franks, P., Hulme, S., Spriggs, E., Christin, P., Edwards, E. and Osborne, C. (2012). Photosynthetic pathway and ecological adaptation explain stomatal trait diversity amongst grasses. New Phytologist, 193, 387–396. 145- Tendon, H. L. S. (2005). Methods of analysis of soils, plants, waters and fertilizers. Fertilization development and consultation organization. 203 PP. New Delhi: India. Fertiliser Development and Consultation Organisation. 146- Tozlu, I. Moore, GA. and Guy, CL. (2000). Effect of increase Nacl concentration on stem elongation, dry mass production, and macro and micro nutrient accumulation in (Poncirustrifoliata) Aust. J. Plant Physiology. 27(1):35-42. 147- Tuasamu, Y. (2009). Toleransi hotong (Setaria italica l. Beauv) pada berbagai cekaman kekeringan: pendekatan anatomi dan fisiologi. [Thesis]. Sekolah Pascasarjana. Institut Pertanian Bogor. Bogor. [Indonesian] 148- Tulipani, S., Mezzetti, B., Capocasa, F., Bompadre, S., Beekwilder, J., De Vos, C.R., Capanoglu, E., Bovy, A. and Battino, M. (2008). Antioxidants, phenolic compounds, and nutritional quality of different strawberry genotypes. J. Agric. Food Chem. 56, 696-704. 149- Tuna, A. L. (2014). Influence of foliarly applied different triazole compounds on growth, nutrition, and antioxidant enzyme activities in tomato (Solanum lycopersicum L.) under salt stress. Australian Journal of Crop Science, 8, 71.150- Vashev, B., Gaiser, T., Ghawana, T., Vries, A.D. and Stahr, K. (2010). Biosafor Project Deliverable 9: Cropping potentials for saline areas in India, Pakistan and Bangladesh. University of Hohenheim, Hohenheim. 151- Walker, R. R., Torokfalvy, E., Grieve, A. M. and Prior, L. D. (1983). Water relations and ion concentrations of leaves on salt stressed citrus plants, Aust J Plant Physiol, 10: 263-277. 152- Wang, L., Shan, T., Xie, B., Ling, C., Shao, S., Jin, P. and Zheng, Y. (2019). Glycine betaine reduces chilling injury in peach fruit by enhancing phenolic and sugar metabolisms. Food Chem. 272, 530-538. 153- Waqas, M., Yaning, C., Iqbal, H., Shareef, M., Rehman, H. and Yang, Y. (2017). Paclobutrazol improves salt tolerance in quinoa: Beyond the stomatal and biochemical interventions. Journal of Agronomy and Crop Science, 203(4), 315–322. 154- Watson, M.R. (1987). Research on tree growth regulators has exciting implications for horticulture. American Nurseryman166 (14):70-79, July 15, 1987. 155- Webber, H.J. and Bachelor, L.D. (1948). The Citrus industry. Vol 1. History, Botany and Breeding. University of California Press, Berkely and los Angeles. 156- Wutscher, H. K. (1977). The influence of rootstocks on yield and quality of red grapefruit in Texas. In Proceedings of the International Society of Citriculture (Vol. 2, pp. 526-529). 157- Wynjones, R. G. and Strosy, R. (1978). Salt stress and comparative physiology in the Gramineaell. Glycine betaine and proline accumulation into salt and water–stress. Barley activates. Ans. J. Plant Phys. 5:17-29. 158- Zekri, M. (2003). Effect of salinity on emergence, growth, and chloride concentration of citrus rootstock seedlings, Proc Interame Soc Tropical Hort, 46: 17-20. 159- Zekri, M. and Parsons, L. R. (1990). Calcium influences growth and leaf mineral concentration of citrus under saline conditions, Hort Sci, 25: 784-786. 160- Zekri, M. and Parsons, L. R. (1992). Salinity tolerance of citrus rootstocks: Effects of salt on root and leaf mineral concentrations. Plant and soil, 147, 171-181.161- Zekri, Mongi. (2001). Salinity effect on seedling emergence, Nitrogen and Chloride concentrations, and growth of citrus rootstocks. Proc.Fla.State Hort .Soc.114:79-82. 162- Zhu, J.K. (2001). Plant salt tolerance. Trends Plant Sci. 6, 66-71.
Тип
Thesis

2024-03-07
EndNote
Посмотрите в Google Scholar
If you notice any incorrect information relating to this record, please contact us at agris@fao.org agris@fao.org