PREDICTION OF PHENOTYPIC AND GENOTYPIC VALUES BY BLUP/GWS AND NEURAL NETWORKS
2018
ALISSON ESDRAS COUTINHO | DIOGO GONÇALVES NEDER | MAIRYKON COÊLHO DA SILVA | ELIANE CRISTINA ARCELINO | SILVAN GOMES DE BRITO | JOSÉ LUIZ SANDES DE CARVALHO
Genome-wide selection (GWS) uses simultaneously the effect of the thousands markers covering the entire genome to predict genomic breeding values for individuals under selection. The possible benefits of GWS are the reduction of the breeding cycle, increase in gains per unit of time, and decrease of costs. However, the success of the GWS is dependent on the choice of the method to predict the effects of markers. Thus, the objective of this work was to predict genomic breeding values (GEBV) through artificial neural networks (ANN), based on the estimation of the effect of the markers, compared to the Ridge Regression-Best Linear Unbiased Predictor/Genome Wide Selection (RR-BLUP/GWS). Simulations were performed by software R to provide correlations concerning ANN and RR-BLUP/GWS. The prediction methods were evaluated using correlations between phenotypic and genotypic values and predicted GEBV. The results showed the superiority of the ANN in predicting GEBV in simulations with higher and lower marker densities, with higher levels of linkage disequilibrium and heritability.
Показать больше [+] Меньше [-]Библиографическая информация
Эту запись предоставил Directory of Open Access Journals