NONLINEAR MODELS FOR DESCRIPTION OF CACAO FRUIT GROWTH WITH ASSUMPTION VIOLATIONS
2017
JOEL AUGUSTO MUNIZ | MICHERLANIA DA SILVA NASCIMENTO | TALES JESUS FERNANDES
Cacao (Theobroma cacao L.) is an important fruit in the Brazilian economy, which is mainly cultivated in the southern State of Bahia. The optimal stage for harvesting is a major factor for fruit quality and the knowledge on its growth curves can help, especially in identifying the ideal maturation stage for harvesting. Nonlinear regression models have been widely used for description of growth curves. However, several studies in this subject do not consider the residual analysis, the existence of a possible dependence between longitudinal observations, or the sample variance heterogeneity, compromising the modeling quality. The objective of this work was to compare the fit of nonlinear regression models, considering residual analysis and assumption violations, in the description of the cacao (clone Sial-105) fruit growth. The data evaluated were extracted from Brito and Silva (1983), who conducted the experiment in the Cacao Research Center, Ilheus, State of Bahia. The variables fruit length, diameter and volume as a function of fruit age were studied. The use of weighting and incorporation of residual dependencies was efficient, since the modeling became more consistent, improving the model fit. Considering the first-order autoregressive structure, when needed, leads to significant reduction in the residual standard deviation, making the estimates more reliable. The Logistic model was the most efficient for the description of the cacao fruit growth.
Показать больше [+] Меньше [-]Библиографическая информация
Эту запись предоставил Directory of Open Access Journals