Data augmentation from RGB to chlorophyll fluorescence imaging Application to leaf segmentation of Arabidopsis thaliana from top view images
2019
Sapoukhina, Natalia | Samiei, Salma | Rasti, Pejman | Rousseau, David | Institut de Recherche en Horticulture et Semences (IRHS) ; Université d'Angers (UA)-Institut National de la Recherche Agronomique (INRA)-AGROCAMPUS OUEST | Laboratoire Angevin de Recherche en Ingénierie des Systèmes (LARIS) ; Université d'Angers (UA)
International audience
Показать больше [+] Меньше [-]Английский. In this report we investigate various strategies to boost the performance for leaf segmentation of Arabidopsis thaliana in chlorophyll fluorescent imaging without any manual annotation. Direct conversion of RGB images to gray levels picked from CVPPP challenge or from a virtual Arabidopsis thaliana simulator are tested together with synthetic noisy versions of these. Segmentation performed with a state of the art U-Net convolutional neural network is shown to benefit from these approaches with a Dice coefficient between 0.95 and 0.97 on the segmentation of the border of the leaves. A new annotated dataset of fluorescent images is made available.
Показать больше [+] Меньше [-]Французский. In this report we investigate various strategies to boost the performance for leaf segmentation of Arabidopsis thaliana in chlorophyll fluorescent imaging without any manual annotation. Direct conversion of RGB images to gray levels picked from CVPPP challenge or from a virtual Arabidopsis thaliana simulator are tested together with synthetic noisy versions of these. Segmentation performed with a state of the art U-Net convolutional neural network is shown to benefit from these approaches with a Dice coefficient between 0.95 and 0.97 on the segmentation of the border of the leaves. A new annotated dataset of fluorescent images is made available.
Показать больше [+] Меньше [-]Библиографическая информация
Эту запись предоставил Institut national de la recherche agronomique