Уточнить поиск
Результаты 1-10 из 428
Food animals as reservoirs and potential sources of multidrug-resistant diarrheagenic E. coli pathotypes: Focus on intensive pig farming in South Africa
2022
Abdalla,Shima E. | Abia,Akebe L.K. | Amoako,Daniel G. | Perrett,Keith | Bester,Linda A. | Essack,Sabiha Y.
BACKGROUND: Diarrheagenic E. coli (DEC) strains are a major cause of diarrheal diseases in both developed and developing countries. Healthy asymptomatic animals may be reservoirs of zoonotic DEC, which may enter the food chain via the weak points in hygiene practices AIM: We investigated the prevalence of DEC along the pig production continuum from farm-to-fork. METHODS: A total of 417 samples were collected from specific points along the pig production system, that is, farm, transport, abattoir and food. E. coli was isolated and enumerated using Colilert. Ten isolates from each Quanti-tray were selected randomly and phenotypically identified using eosin methylene blue agar selective media. Real-time polymerase chain reaction (PCR) was used to confirm the species and to classify them into the various diarrheagenic pathotypes. Antimicrobial susceptibility was determined against a panel of 20 antibiotics using the Kirby-Bauer disk diffusion method and EUCAST guideline. RESULTS: The final sample size consisted of 1044 isolates, of which 45.40% (474/1044) were DEC and 73% (762/1044) were multidrug-resistant. Enteroinvasive E. coli (EIEC) was the most predominant DEC at all the sampling sites. CONCLUSION: The presence of DEC in food animal production environments and food of animal origin could serve as reservoirs for transmitting these bacteria to humans, especially in occupationally exposed workers and via food. Adherence to good hygienic practices along the pig production continuum is essential for mitigating the risk of transmission and infection, and ensuring food safety.
Показать больше [+] Меньше [-]Human and animal fasciolosis: Coprological survey in Narok, Baringo and Kisumu counties, Kenya
2022
Kipyegen,Cornelius K. | Muleke,Charles I. | Otachi,Elick O.
Fasciolosis is caused by digenean trematodes of the genus Fasciola. The principal definitive hosts are cattle, sheep and goats. Humans are infected as accidental hosts. Fasciolosis is one of the major neglected tropical diseases and is considered an emerging zoonotic infection. This study was aimed at determining the prevalence of human and domestic animal fasciolosis in selected counties in Kenya. Stool samples for Fasciola diagnosis were collected from humans and domestic animals and transported to the laboratory at Egerton University and processed using sedimentation technique and examined for the presence of eggs. A total of 272 human samples collected were all negative for Fasciola eggs. A total of 582 domestic animals (cattle [46.0%], sheep [29.9%] and goats [24.1%]) samples collected had overall prevalence of 30.9% for Fasciola infection. There was no significant differences (p > 0.05) between the prevalence of fasciolosis and origin of the animals, sex and season. There was a significant difference (p < 0.05) between the prevalence of fasciolosis and domestic animals, age and body condition. The prevalence of fasciolosis was high in two irrigation schemes which favour the breeding of intermediate host snail and grazing of animals along the irrigation canals where metacercaria of Fasciola parasites could be present on the vegetation. Although human fasciolosis was not detected in this study, the presence of animal fasciolosis can pose public health risk because of its zoonotic nature. Therefore, it is important to introduce measures which would help to reduce the exposure of animals to Fasciola infection.
Показать больше [+] Меньше [-]Effect of cytochrome P450 inhibition on toxicity of diclofenac in chickens: Unravelling toxicity in Gyps vultures
2022
Locke,Sara | Naidoo,Vinny | Hassan,Ibrahim | Duncan,Neil
Diclofenac was responsible for the decimation of Gyps vulture species on the Indian subcontinent during the 1980s and 1990s. Gyps vultures are extremely sensitive (the lethal dose 50 [LD50] ~ 0.1 mg/kg - 0.2 mg/kg), with toxicity appearing to be linked to metabolic deficiency, demonstrated by the long T1/2 (~12 h - 17 h). This is in striking comparison to the domestic chicken (Gallus gallus domesticus), in which the LD50 is ~10 mg/kg and the T1/2 is ~1 h. The phase 1 cytochrome P450 (CYP) 2C subfamily has been cited as a possible reason for metabolic deficiency. The aim of this study was to determine if CYP2C9 homolog pharmacogenomic differences amongst avian species is driving diclofenac toxicity in Gyps vultures. We exposed each of 10 CYP-inhibited test group chickens to a unique dose of diclofenac (as per the Organisation for Economic Co-operation and Development [OECD] toxicity testing guidelines) and compared the toxicity and pharmacokinetic results to control group birds that received no CYP inhibitor. Although no differences were noted in the LD50 values for each group (11.92 mg/kg in the CYP-inhibited test group and 11.58 mg/kg in the control group), the pharmacokinetic profile of the test group was suggestive of partial inhibition of CYP metabolism. Evaluation of the metabolite peaks produced also suggested partial metabolic inhibition in test group birds, as they produced lower amounts of metabolites for one of the three peaks demonstrated and had higher diclofenac exposure. This pilot study supports the hypothesis that CYP metabolism is varied amongst bird species and may explain the higher resilience to diclofenac in the chicken versus vultures.
Показать больше [+] Меньше [-]Spatial distribution and habitat selection of culicoides imicola: The potential vector of bluetongue virus in Tunisia
2021
Thameur,Ben H. | Soufiène,Sghaier | Ammar,Heni Haj | Hammami,Salah
The increasing threat of vector-borne diseases (VBDs) represents a great challenge to those who manage public and animal health. Determining the spatial distribution of arthropod vector species is an essential step in studying the risk of transmission of a vector-borne pathogen (VBP) and in estimating risk levels of VBD. Risk maps allow better targeting surveillance and help in designing control measures. We aimed to study the geographical distribution of Culicoides imicola, the main competent vector of Bluetongue virus (BTV) in sheep in Tunisia. Fifty-three records covering the whole distribution range of C.imicola in Tunisia were obtained during a 2-year field entomological survey (August 2017 - January 2018 and August 2018 - January 2019). The ecological niche of C. imicola is described using ecological-niche factor analysis (ENFA) and Mahalanobis distances factor analysis (MADIFA). An environmental suitability map (ESM) was developed by MaxEnt software to map the optimal habitat under the current climate background. The MaxEnt model was highly accurate with a statistically significant area under curve (AUC) value of 0.941. The location of the potential distribution of C. imicola is predicted in specified regions of Tunisia. Our findings can be applied in various ways such as surveillance and control program of BTV in Tunisia.
Показать больше [+] Меньше [-]Finding of a two-headed green turtle embryo during nest monitoring in Baa Atoll, Maldives
2021
Köhnk,Stephanie | Brown,Rosie | Liddell,Amelia
Green sea turtles are one of the two species of marine turtles known to nest in the Maldives. The prevalent time of nesting seems to be inconsistent throughout the island nation. In this study, sea turtle nesting activity was monitored on the island of Coco Palm Dhuni Kolhu in Baa Atoll over a period of 12 months. A total of 13 nests were confirmed with a median hatching success rate of 89.58% as ascertained by nest excavation. In one of the nests, a severely deformed hatchling with polycephaly, an opening in the neck area and a lordotic spine was found, and we investigated in detail with radiographic images and a necropsy. Our findings support the importance of consistent nesting activity and nest monitoring efforts in the country as a basis for conservation efforts.
Показать больше [+] Меньше [-]Review of African swine fever outbreaks history in South Africa: From 1926 to 2018
2021
Mushagalusa,Ciza A. | Etter,Eric | Penrith,Mary-Louise
The article reviews the outbreaks and distribution of African swine fever (ASF) in South Africa since the first probable outbreak that occurred in the Koedoesrand Ward in 1926. Retrospective data on the ASF outbreaks in South Africa were obtained from the World Organisation for Animal Health (OIE) disease database and the South African veterinary services annual reports in addition to published articles and online sources. South Africa has experienced many outbreaks that can be divided into 2 time periods: the period before the development of the OIE diseases database (1993) and the period after. More than 141 outbreaks of ASF were reported during the first period. Since the development of OIE disease database, 72 outbreaks directly involving 2968 cases, 2187 dead and 2358 killed pigs mainly in smallholder pig farms were reported. The median number of cases for a given ASF outbreak is 17, but in 50% of outbreaks no pigs were killed for prevention. The most important ASF outbreak was reported in April 2014 in the Greater Zeerust district (North West province) involving 326 cases and 1462 killed pigs. However, the outbreak with highest mortality involving 250 pigs was reported in 2016 (Free State province). According to phylogenetic analysis, nine p72 genotypes (I, III, IV, VII, VIII, XIX, XX, XXI and XXII) have been identified in South Africa. Season-wise, more outbreaks were recorded during summer. It was also observed that the OIE disease database could contain errors that would have been introduced through compiled forms at country level. Spatiotemporal studies on ASF outbreaks in South Africa are therefore required in order to assess statistically and quantitatively the clustering of outbreaks over space and time.
Показать больше [+] Меньше [-]Antibody response to Raboral VR-G® oral rabies vaccine in captive and free-ranging black-backed jackals (Canis mesomelas)
2022
Koeppel,Katja N. | Geertsma,Peter | Kuhn,Brian F. | van Schalkwyk,Ockert L. | Thompson,Peter N.
Rabies is a zoonotic disease that remains endemic in large parts of southern Africa because of its persistence in wildlife and domestic dog vectors. The black-backed jackals (Canis mesomelas) is primarily the wildlife vector responsible for rabies outbreaks in northern parts of South Africa. Two trials were carried out to investigate antibody responses to the oral rabies vaccine Raboral V-RG® in black-backed jackals under captive and free-ranging conditions. In captive jackals 10/12 (83%; 95% confidence interval [CI]: 52% - 98%), seroconverted after single oral vaccination. Nine captive jackals had protective antibody titres (> 0.5 IU/mL) at 4 weeks (median: 2.1 IU/mL; inter quartile range [IQR]: 0.6-5.7) and 10 jackals had at 12 weeks (median: 3.5 IU/mL; IQR: 1.5-8.3) and three maintained antibody titres for up to 48 weeks (median: 3.4 IU/mL; IQR: 2.0-6.3). Four sites were baited with Raboral V-RG® vaccine for wild jackals, using fishmeal polymer and chicken heads. Baits were distributed by hand or from vehicle at three sites in north-eastern South Africa, with an average baiting density of 4.4 baits/km² and at one site in central South Africa, at 0.12 baits/km². This resulted in protective antibody titres in 3/11 jackals (27%; 95% Cl: 6-61) trapped between 3 and 12 months after baiting in north-eastern South Africa, compared with 4/7 jackals (57%; 95% Cl: 18-90) trapped after 3-18 months in central South Africa. This study shows the potential utility of oral rabies vaccination for the control of wildlife-associated rabies in north-eastern and central South Africa, but extensive studies with wider distribution of bait are needed to assess its potential impact on rabies control in wild jackals.
Показать больше [+] Меньше [-]Characterisation and antibiotic resistance of Yersinia enterocolitica from various meat categories, South Africa
2022
Seakamela,Emmanuel M. | Diseko,Letlhogonolo | Malatji,Dikeledi | Makhado,Lavhelesani | Motau,Mmatau | Jambwa,Kudakwashe | Magwedere,Kudakwashe | Ntushelo,Nombasa | Matle,Itumeleng
Yersinia enterocolitica infections impose a significant public health and socioeconomic burden on human population in many countries. The current study investigated the prevalence, antimicrobial resistance profile and molecular diversity of Y. enterocolitica in meat and meat products across various retail outlets in selected provinces of South Africa (SA). In a cross-sectional study, a total of 581 retail meat and meat products were collected from four cities across three provinces of SA. Samples were from beef and pork products, which included 292 raw intact, 167 raw processed, and 122 ready-to-eat (RTE) meats. Samples were analysed using classical microbiological methods for isolation, identification and biotyping of Y. enterocolitica. Conventional polymerase chain reaction (PCR) was performed for confirmation, serotyping, screening of virulence (n = 11) and antimicrobial resistance (n = 18) genes. Phenotypic antimicrobial resistance profiles were determined against 12 antibiotics discs, using disc diffusion method. The overall prevalence of 12% (70/581) was reported across all cities with contamination proportion reported in samples collected from raw intact 15% (43/292), followed by raw processed 11% (18/167) and RTE meats 7% (9/122). All positive isolates were of biotype 1A with 7% (5/70) belonging to bioserotype 1A/O:8. Most of the isolates harboured ymoA, ystB, fepD, ail, fepA, invA and myfA virulence genes. High antimicrobial resistance frequency was observed for ampicillin (94%), cephalothin (83%) and amoxicillin (41%), respectively. Of the 18 tested antimicrobial resistance genes, blaTEM was the most predominant (40%) followed by cmlA (21%). This study reveals the presence of antimicrobial resistant Y. enterocolitica possessing virulent genes of public health importance in products of animal origin, therefore, health monitoring and surveillance of this pathogen is required.
Показать больше [+] Меньше [-]Seroprevalence of infectious bronchitis virus and avian reovirus in free backyard chickens
2022
Pinto,Sonia C. | Aleixo,Jescka | Camela,Kleidy | Chilundo,Abel G. | Bila,Custódio G.
Infectious bronchitis virus (IBV) and avian reovirus (ARV) cause significant losses in the poultry industry throughout the world. A cross-sectional study was conducted in four villages in Manjacaze district, Southern Mozambique, to determine the seroprevalence of IBV and ARV. A total of 467 serum samples from adult unvaccinated backyard chickens were screened using commercial and competitive enzyme-linked immunoabsorbent assay kits. Our results showed anti-IBV and anti-ARV antibodies in all surveyed households and villages. The overall seroprevalence was 89.5% (95% confidence interval [CI]: 77.2-97.4) and 95.7% (95% CI: 88.0-99.2) for IBV and ARV, respectively. The risk of becoming exposed to IBV was lower in Chidenguele village compared with the other three villages (p > 0.05). However, no statistically significant differences were observed for becoming exposed to ARV between villages (p < 0.05). The backyard chickens tested in this study had no previous history of vaccination, outbreaks or typical clinical signs of IB and AR diseases. Therefore, the presence of antibodies to IBV and ARV was considered clear evidence that the birds have been naturally exposed to those two infectious agents, and the infection was of subclinical type. It is concluded that IBV and ARV are widespread in backyard chickens in the studied area. These obtained data are essential for design and implementation of chicken health development programmes. CONTRIBUTION: The epidemiology of IBV and ARV of backyard chicken in Mozambique is unknown. This study determined the seroprevalence of IBV and ARV in backyard chicken health. The obtained data are essential for design and implementation of chicken health development programmes
Показать больше [+] Меньше [-]Propagation of avian influenza virus in embryonated ostrich eggs
2022
Laleye,Agnes T. | Adeyemi,Modupeore | Abolnik,Celia
Influenza A viruses (IAVs) are typically isolated and cultured by successive passages using 9- to 11-day-old embryonated chicken eggs (ECEs) and in 14-day old ECEs for virus mutational studies. Real-time reverse transcription-polymerase chain reaction tests (RT-PCRs) are commonly used for IAV diagnosis, but virus isolation remains invaluable in terms of its high sensitivity, providing viable isolates for further studies and the ability to distinguish between viable and nonviable virus. Efforts at isolating ostrich-origin IAVs from RT-PCR positive specimens using ECEs have often been unsuccessful, raising the possibility of a species bottleneck, whereby ostrich-adapted IAVs may not readily infect and replicate in ECEs, yet the capacity of an ostrich embryo to support the replication of influenza viruses has not been previously demonstrated. This study describes an optimised method for H5 and H7 subtype IAV isolation and propagation in 28-day old embryonated ostrich eggs (EOEs), the biological equivalent of 14-day old ECEs. The viability of EOEs transported from breeding sites could be maximised by pre-incubating the eggs for 12 to 14 days prior to long-distance transportation. This method applied to studies for ostrich-adapted virus isolation and in ovo studies will enable better understanding of the virus-host interaction in ostriches and the emergence of potentially zoonotic diseases.
Показать больше [+] Меньше [-]