Уточнить поиск
Результаты 1-10 из 18
Treatment of Humerus Salter Harris Type II Fracture with Double Pin Combination
2021
Gulaydin, Ali | Akgul, Mustafa Barıs | Sindak, Nihat
In this case report, the clinical and radiographic results of the treatment of Salter Harris Type II fracture in the left humerus of a 10-month-old female and crossbred dog with parallel pin technique was evaluated. The dog with complaining of lameness was brought to Siirt University, Faculty of Veterinary Medicine, Clinic of Surgery Department and local fracture findings were found in the distal 1/3 of the left humerus. On radiological examination, it was found that the distal physeal line of the left humerus was detached. Also, it was seen that the integrity of the bone cortex was disrupted through in a line that included the metaphysis at the medial angle. In the operation, following the reduction of the fracture fragments, 2 krischner pins with 2 mm in diameter parallel to each other were applied from the medial cortex of the humerus to the lateral side of the distal condule and fixation was achieved. After the operation, the limb was taken to a backed bandage. In the radiological examination of the case on post-op 3rd week, it was found that the formation of the collus began. On the post-op 21st day, the bandage was removed and physical therapy applications were started to apply. On the post-op 4th week, it was seen that the dog used the extremity functionally and it was discharged. As a result, it was concluded that parallel double pin applications can be used successfully in the treatment of Salter Harris Type II fractures that are formed in the distal of dog's humerus.
Показать больше [+] Меньше [-]Axial stiffness and ring deformation of complete and incomplete single ring circular external skeletal fixator constructs
2012
Hudson, Caleb C. | Lewis, Daniel D. | Cross, Alan R. | Horodyski, MaryBeth | Banks, Scott A. | Pozzi, Antonio
Objective: To compare the axial stiffness, maximum axial displacement, and ring deformation during axial loading of single complete and incomplete circular (ring) external skeletal fixator constructs. Sample: 32 groups of single ring constructs (5 constructs/group). Procedures: Single ring constructs assembled with 2 divergent 1.6-mm-diameter Kirschner wires were used to stabilize a 60-mm-long segment of 16-mm-diameter acetyl resin rod. Construct variables included ring type (complete or incomplete), ring diameter (50, 66, 84, or 118 mm), and fixation wire tension (0, 30, 60, or 90 kg). Axial loading was performed with a materials testing system. Construct secant stiffness and maximum displacement were calculated from the load-displacement curves generated for each construct. Ring deformation was calculated by comparing ring diameter during and after construct loading to ring diameter prior to testing. Results: Complete ring constructs had greater axial stiffness than did the 66-, 84-, and 118-mm-diameter incomplete ring constructs. As fixation wire tension increased, construct stiffness increased in the 66-, 84-, and 118-mm-diameter incomplete ring constructs. Maximum axial displacement decreased with increasing fixation wire tension, and complete ring constructs allowed less displacement than did incomplete ring constructs. Incomplete rings were deformed by wire tensioning and construct loading. Conclusions and Clinical Relevance: Mechanical performance of the 66-, 84-, and 118-mm-diameter incomplete ring constructs improved when wire tension was applied, but these constructs were not as stiff as and allowed greater displacement than did complete ring constructs of comparable diameter. For clinical practice, tensioning the wires placed on 84- and 118-mm-diameter incomplete rings to 60 kg is recommended.
Показать больше [+] Меньше [-]Mechanical evaluation of transosseous wire rope configurations in a large animal external fixator
1995
By use of wire ropes as the transosseous component, an external skeletal fixator for the repair of long bone fractures in horses and cattle has been designed and tested in axial compression. Theoretical methods were used in the design process to size fixator components; however, our results suggest that conventional methods of analyzing the displacement of the transosseous component may not apply to wire ropes. Large pretensions in the wire ropes are necessary to obtain functional stiffnesses for fracture fixation. Therefore, a method was sought for terminating the ropes so that an appropriate pretension could be introduced into the rope through its interface with the fixator rings. Ropes were terminated by use of 5 methods and were tested in axial tension to failure. These methods included 3 copper sleeve arrangements, welded ends, and drum sockets. The drum sockets (57.6% of rope breaking strength) far exceeded the strengths provided by the copper sleeves (8.5 to 26.6%) and the welded ends (44.3%). Using the drum sockets, 5 rope configurations were assembled to the fixator, using wood blocks to simulate bones with a gap defect. The fixator was loaded in axial compression for each of the rope configurations, and stiffnesses were determined from measured axial displacement and applied load. The 4-ring fixator configuration, with 2 ropes at 60 degrees angular separation/ring, was the stiffest. In a worst case (gap) model, a mean axial compression load of 1,730 N was observed at 2 mm of displacement for a 4-ring fixator configuration. Our results suggest that, in less conservative scenarios where compression of the fracture surfaces can share limb loads, wire ropes may function well as the transosseous components of an external fixator.
Показать больше [+] Меньше [-]Holding power of orthopedic screws in the large metacarpal and metatarsal bones of calves
1994
Blikslager, A.T. | Bowman, K.F. | Abrams, C.F. Jr | Seaboch, T.R. | Hunt, E.L.
Holding power was determined for various orthopedic screws in bones of calves. Holding power was defined as maximal tensile force required to remove a screw divided by thickness of bone engaged by the screw (kN/mm). Comparative pull-out tests were performed, using pairs of large metacarpal or metatarsal bones from calves aged 3 to 14 days. Comparisons were made of the holding power of 6.5-mm fully threaded cancellous screws and 5.5-mm cortical screws in the proximal and distal metaphyses, and of 4.5-mm and 5.5-mm cortical screws in the diaphysis. Sixteen repetitions of each comparative trial were performed. There was no statistically significant difference in the holding power of 4.5- and 5.5-mm cortical screws in the diaphysis. There was no significant difference in the holding power of 5.5-mm cortical and 6.5-mm fully threaded cancellous screws in the proximal metaphysis. In the distal metaphysis, 6.5-nu-n fully threaded cancellous screws had significantly (P < 0.001) greater holding power than did 5.5-mm cortical screws. There was no significant difference between the mean holding power of 5.5-mm cortical screws in the proximal metaphysis and 5.5-mm cortical screws in the distal metaphysis. There was significantly (P < 0.01) greater mean holding power of 6.5-mm cortical, fully threaded cancellous screws in the distal metaphysis, compared with the proximal metaphysis.
Показать больше [+] Меньше [-]Dual-energy X-ray absorptiometry of canine femurs with and without fracture fixation devices
1994
Markel, M.D. | Bogdanske, J.J.
The effect of 5 fracture fixation methods on bone mineral density (BMD) measurement of femurs, using dual-energy X-ray absorptiometry (DXA) was determined in a canine model. Six regions of interest were measured, including the entire femur, the diaphysis of the femur, and small regions centered over the middiaphysis of the bone (lateral middiaphyseal cortex, medial middiaphyseal cortex, middiaphyseal medullary canal, and total middiaphysis). Eight unpaired femurs were collected and scanned by use of DXA before (5 separate scans/femur) and after (5 separate scans/femur) fixation by use of 1 of 5 fixation methods. These fixation methods included: intramedullary (IM) nail: IM nail and cerclage wires; IM nail and external skeletal fixation.; locked IM nail; and a dynamic compression plate (DCP). All implants were made of stainless steel. The IM nail fixation devices caused significant decreases in the DXA measurement of BMD in the small regions of interest, compared with femurs without fixation devices (mean decrease, 37.3%; P < 0.05). The locked nail caused similar, but larger, decreases in the DXA measurement of BMD, compared with the IM nail fixation methods (P < 0.05). Plate fixation caused a small, but significant (P < 0.05), decrease (2.8%) in the DXA measurement of BMD in the large regions of interest, but when all regions were averaged, it did not cause significant change in this measurement, compared with femurs without fixation devices. Plate fixation caused a large change in the DXA measurement of BMD in 1 region only in the lateral cortical bone under the plate where the DXA measurement of BMD was increased 13.3% over that in femurs without fixation devices (P < 0.05). In femurs without fixation devices, the precision error ranged from 0.5% for large regions of interest to 2.4% for small regions of interest. None of the fixation methods altered the precision error of large regions of interest (P > 0.05). In contrast, the precision errors of the small regions of interest were increased by the IM fixation methods and the locked IM nail, When all regions were combined, IM fixation methods caused significant (P < 0.05) increase in the precision error, compared with femurs without fixation devices (mean increase, 157%; range, 121 to 193%). Plate fixation did not change the precision error of any region of interest, compared with femurs without fixation devices (P > 0.05; power = 0.8 at delta = 64%).
Показать больше [+] Меньше [-]Effect of diameter of the drill hole on torque of screw insertion and pushout strength for headless tapered compression screws in simulated fractures of the lateral condyle of the equine third metacarpal bone
2006
Carpenter, R.S. | Galuppo, L.D. | Stover, S.M.
Objective-To compare variables for screw insertion, pushout strength, and failure modes for a headless tapered compression screw inserted in standard and oversize holes in a simulated lateral condylar fracture model. Sample Population-6 pairs of third metacarpal bones from horse cadavers. Procedure-Simulated lateral condylar fractures were created, reduced, and stabilized with a headless tapered compression screw by use of a standard or oversize hole. Torque, work, and time for drilling, tapping, and screw insertion were measured during site preparation and screw implantation. Axial load and displacement were measured during screw pushout. Effects of drill hole size on variables for screw insertion and screw pushout were assessed by use of Wilcoxon tests. Results-Drill time was 59% greater for oversize holes than for standard holes. Variables for tapping (mean maximum torque, total work, positive work, and time) were 42%, 70%, 73%, and 58% less, respectively, for oversize holes, compared with standard holes. Variables for screw pushout testing (mean yield load, failure load, failure displacement, and failure energy) were 40%, 40%, 47%, and 71% less, respectively, for oversize holes, compared with standard holes. Screws could not be completely inserted in 1 standard and 2 oversize holes. Conclusions and Clinical Relevance-Enlarging the diameter of the drill hole facilitated tapping but decreased overall holding strength of screws. Therefore, holes with a standard diameter are recommended for implantation of variable pitch screws whenever possible. During implantation, care should be taken to ensure that screw threads follow tapped bone threads.
Показать больше [+] Меньше [-]Comparison of the holding power of 3.5-mm cortical versus 4.0-mm cancellous orthopedic screws in the pelvis of immature dogs (cadavers)
1995
Sardinas, J.C. | Kraus, K.H. | Sisson, R.D.
A 3.5-mm cortical orthopedic screw was compared with a 4.0-mm cancellous screw for maximal load to failure in the pelvis of immature dogs. The pelvis from young cadavers (7 to 13 months old) was divided into hemipelves and used for testing of the 2 screw types. Two sites in each hemipelvis were used, mid-shaft of the ilium and mid-sacrum, including the wing of the ilium. The screws were extracted, and maximal load to failure and mode of failure were recorded. Maximal load to failure per millimeter of engaged thread was calculated. In either pelvic site, the 4.0-mm cancellous screw required a significantly (P < 0.05) higher pullout force per millimeter of engaged screw threads than did the 3.5-mm cortical bone screw.
Показать больше [+] Меньше [-]Radiographic geometric variation of equine long bones
1994
Hanson, P.D. | Markel, M.D.
As more sophisticated research is performed to refine fracture fixation techniques for horses, it is important that normal values for the geometric properties of the bones of the appendicular skeleton be determined and that suitable controls be available. We evaluated the geometric properties of total bone width, cortical bone width, and medullary canal/trabecular bone width measured from 2 radiographic projections of equine long bones (humerus, radius, third metacarpal bone, femur, tibia, and third metatarsal bone) obtained from a general population of horses. Measurements were performed on slices separated by intervals equal to 5% of the bone's length. Slices were then grouped into 5 regions: proximal epiphysis, proximal part of the metaphysis, diaphysis, distal part of the metaphysis, and distal epiphysis. Results validated use of the contralateral bone as a control for assessing experimental models or clinical cases. Of 858 homotypic slice comparisons between left and right bones, significant (P less than or equal to 0.05) differences were detected in 31 (3.6%) of the comparisons. Of 168 homotypic region comparisons, significant differences were observed in 3 (1.8%) of the comparisons. The greatest variation between left and right bones was observed in metaphyseal regions, areas with bony protuberances, and regions with prominent bone superimposition. At a power of 0.8 for the statistical tests performed in this study, the mean homotypic variation of bones in each region is < 5.8% for the proximal epiphysis, 11.3% for the proximal part of the metaphysis, 6.8% for the diaphysis, 12.2% for the distal part of the metaphysis, and 5.2% for the distal epiphysis.
Показать больше [+] Меньше [-]Comparison of torsional properties between a Fixateur Externe du Service de Santé des Armées and an acrylic tie-in external skeletal fixator in a red-tailed hawk (Buteo jamaicensis) synthetic tibiotarsal bone model
2020
Hersh-Boyle, Rebecca A. | Kapatkin, Amy S. | Garcia, Tanya C. | Robinson, Duane A. | Sanchez-Migallon Guzman, David | Kerrigan, Shannon M. | Chou, Po-Yen | Stover, Susan M.
OBJECTIVE To compare the torsional mechanical properties of 2 external skeletal fixators (ESFs) placed with 2 intramedullary pin (IP) and transfixation pin (TP) size combinations in a model of raptor tibiotarsal bone fracture. SAMPLE 24 ESF-synthetic tibiotarsal bone model (polyoxymethylene) constructs. PROCEDURES Synthetic bone models were fabricated with an 8-mm (simulated fracture) gap. Four types of ESF-synthetic bone model constructs (6/group) were tested: a FESSA with a 1.6-mm IP and 1.6-mm TPs, a FESSA with a 2.0-mm IP and 1.1-mm TPs, an acrylic connecting bar with a 1.6-mm IP and 1.6-mm TPs, and an acrylic connecting bar with a 2.0-mm IP and 1.1-mm TPs. Models were rotated in torsion (5°/s) to failure or the machine angle limit (80°). Mechanical variables at yield and at failure were determined from load deformation curves. Effects of overall construct type, connecting bar type, and IP and TP size combination on mechanical properties were assessed with mixed-model ANOVAs. RESULTS Both FESSA constructs had significantly greater median stiffness and median torque at yield than both acrylic bar constructs; FESSA constructs with a 1.6-mm IP and 1.6-mm TPs had greatest stiffness of all tested constructs and lowest gap strain at yield. No FESSA constructs failed during testing; 7 of 12 acrylic bar constructs failed by fracture of the connecting bar at the interface with a TP. CONCLUSIONS AND CLINICAL RELEVANCE Although acrylic bar ESFs have been successfully used in avian patients, the FESSA constructs in this study were mechanically superior to acrylic bar constructs, with greatest benefit resulting from use with the larger TP configuration.
Показать больше [+] Меньше [-]Treatment of Proximal Tibial Fracture of a Calf by Using Linear External Fixator
2019
Gulayd, Ali
In this case report, treatment of the proximal tibial fracture of a calf with a linear external fixator (orthofix) system was presented. Oblique fracture was diagnosed proximal to left tibia regarding the clinical and radiological findings. Following the routine preparatory steps for the operation, the extremity was suspended and the fracture was reduced with orthofix from the lateral side of the tibia under general anesthesia. After the operation, it was observed that the calf could functionally use the related extremity from the first day. The consolidation was completed on the 41st day, and the fixator was removed on 47th day. In conclusion, it was considered that the proximal tibial fractures of calves could be successfully treated with a linear external fixator.
Показать больше [+] Меньше [-]