Уточнить поиск
Результаты 1-10 из 307
Impacts of anthropogenic pollutants on social group cohesion and individual sociability in fish: a systematic review and meta-analysis
2024
Tiddy, Izzy C. | Cortese, Daphne | Munson, Amelia | Blewett, Tamzin A. | Killen, Shaun S.
Anthropogenic pollutants are near-ubiquitous in aquatic systems. Aquatic animals such as fishes are subject to physiological stress induced by pollution present in aquatic systems, which can translate to changes in behaviour. Key adaptive behaviours such as shoaling and schooling may be subject to change as a result of physiological or metabolic stress or neurosensory impacts of pollution. This can result in fitness and ecological impacts such as increased predation risk and reduced foraging success. Here, we conducted a systematic metanalysis of the existing literature, comprising 165 studies, on the effects of anthropogenic pollution on sociability and group cohesion in fish species. Both organic (number of studies = 92, posterior mean (PM) = -0.483, p < 0.001) and inorganic (n = 24, PM = -0.697, p < 0.05) chemical pollutants, as well as light exposure (n = 21, PM = -3.176, p < 0.01) were found to reduce sociability. These pollutants did not reduce group cohesion, indicating that effects may be masked in group settings, though fewer studies were carried out on group cohesion and this is a key area for future research. Mixtures of chemical pollutants (n = 16) were found to reduce cohesion (PM = -45.42, p < 0.01), but increase sociability (PM = 46.00, p < 0.01). Evidence was found that fish may behaviourally acclimate to two forms of pollutant, namely mixed chemical pollutants (PM = -0.693, p < 0.05) and noise exposure (n = 22, PM = -4.059, p < 0.05). While aquatic systems are often subject to pollution from multiple sources and of multiple types, very few studies investigated the effects of multiple stressors concurrently. This review identifies trends in the existing literature, and highlights areas where further research is required in order to understand the behavioural and ecological impacts of anthropogenic pollutants in aquatic systems.
Показать больше [+] Меньше [-]Neglected impacts of plant protection products on invertebrate aquatic biodiversity: a focus on eco-evolutionary processes
2024
Coutellec, Marie-agnès | Chaumot, Arnaud | Sucré, Elliott
The application of plant protection products (PPPs) may have delayed and long-term non-intentional impacts on aquatic invertebrates inhabiting agricultural landscapes. Such effects may induce population responses based on developmental and transgenerational plasticity, selection of genetic resistance, as well as increased extirpation risks associated with random genetic drift. While the current knowledge on such effects of PPPs is still scarce in non-target aquatic invertebrate species, evidences are accumulating that support the need for consideration of evolutionary components of the population response to PPPs in standard procedures of risk assessment. This mini-review, as part of a contribution to the collective scientific assessment on PPP impacts on biodiversity and ecosystem services performed in the period 2020–2022, presents a brief survey of the current results published on the subject, mainly in freshwater crustaceans, and proposes some research avenues and strategies that we feel relevant to fill this gap.
Показать больше [+] Меньше [-]Main conclusions and perspectives from the collective scientific assessment of the effects of plant protection products on biodiversity and ecosystem services along the land–sea continuum in France and French overseas territories
2023
Pesce, Stephane | Mamy, Laure | Sanchez, Wilfried | Amichot, Marcel | Artigas, Joan | Mongruel, Remi | Munaron, Dominique | Aviron, Stephanie | Barthélémy, Carole | Beaudouin, Rémy | Bedos, Carole | Bérard, Annette | Berny, Philippe | Bertrand, Cédric | Bertrand, Colette | Betoulle, Dtephane | Bureau‑point, Eve | Charles, Sandrine | Chaumot, Arnaud | Chauvel, Bruno | Coeurdassier, Michael | Corio‑costet, Marie-france | Coutellec, Agnes | Crouzet, Olivier | Doussan, Isabelle | Faburé, Juliette | Fritsch, Clémentine | Gallai, Nicola | Gonzalez, Patrice | Gouy, Véronique | Hedde, Mickael | Langlais, Alexandra | Le Bellec, Fabrice | Leboulanger, Christophe | Margoum, Christelle | Martin‑laurent, Fabrice | Morin, Soizic | Mougin, Christian | Nélieu, Sylvie | Pelosi, Celine | Rault, Magali | Sabater, Sergi | Stachowski-haberkorn, Sabine | Sucré, Alliott | Thomas, Marielle | Tournebize, Julien | Leenhardt, Sophie
Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020–2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA’s main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.
Показать больше [+] Меньше [-]Recommendations to reduce the streetlight effect and gray areas limiting the knowledge of the effects of plant protection products on biodiversity
2023
Pesce, Stéphane | Sanchez, Wilfried | Leenhardt, Sophie | Mamy, Laure
Preserving biodiversity against the adverse effects of plant protection products (PPPs) is a major environmental and societal issue. However, despite intensive investigation into the ecotoxicological effects of PPPs, the knowledge produced remains fragmented given the sheer diversity of PPPs. This is due, at least in part, to a strong streetlight effect in the field of ecotoxicology. Indeed, while some PPPs have been investigated in numerous ecotoxicological studies, there are many for which the scientific literature still has little or no information on their ecotoxicological risks and effects. The PPPs under the streetlight include a large variety of legacy substances and a more limited number of more recent or currently-in-use substances, such as the herbicide glyphosate and the neonicotinoid insecticides. Furthermore, many of the most recent PPPs (including those used in biocontrol) and PPP transformation products (TPs) resulting from abiotic and/or biotic degradation are rarely addressed in the international literature in the field of ecotoxicology. Here, based on a recent collective scientific assessment of the effects of PPPs on biodiversity and ecosystem services in the French and European contexts, this article sets out to illustrate the limitations and biases caused by the streetlight effect and numbers of gray areas, and issue recommendations on how to overcome them.
Показать больше [+] Меньше [-]What, where, and when: Spatial-temporal distribution of macro-litter on the seafloor of the western and central Mediterranean sea
2024
Cau, Alessandro | Sbrana, Alice | Franceschini, Simone | Fiorentino, Fabio | Follesa, Maria Cristina | Galgani, Francois | Garofalo, Germana | Gerigny, Olivia | Profeta, Adriana | Rinelli, Paola | Sbrana, Mario | Russo, Tommaso
The progressive increase of marine macro-litter on the bottom of the Mediterranean Sea is an urgent problem that needs accurate information and guidance to identify those areas most at risk of accumulation. In the absence of dedicated monitoring programs, an important source of opportunistic data is fishery-independent monitoring campaigns of demersal resources. These data have long been used but not yet extensively. In this paper, MEDiterranean International Trawl Survey (MEDITS) data was supplemented with 18 layers of information related to major environmental (e.g. depth, sea water and wind velocity, sea waves) and anthropogenic (e.g. river inputs, shipping lanes, urban areas and ports, fishing effort) forcings that influence seafloor macro-litter distribution. The Random Forest (RF), a machine learning approach, was applied to: i) model the distribution of several litter categories at a high spatial resolution (i.e. 1 km2); ii) identify major accumulation hot spots and their temporal trends. Results indicate that RF is a very effective approach to model the distribution of marine macro-litter and provides a consistent picture of the heterogeneous distribution of different macro-litter categories. The most critical situation in the study area was observed in the north-eastern part of the western basin. In addition, the combined analysis of weight and density data identified a tendency for lighter items to accumulate in areas (such as the northern part of the Tyrrhenian Sea) with more stagnant currents. This approach, based on georeferenced information widely available in public databases, seems a natural candidate to be applied in other basins as a support and complement tool to field monitoring activities and strategies for protection and remediation of the most impacted areas.
Показать больше [+] Меньше [-]Trapped microplastics within vertical redeposited sediment: Experimental study simulating lake and channeled river systems during resuspension events
2023
Constant, Mel | Alary, Claire | Weiss, Lisa | Constant, Alix | Billon, Gabriel
Plastic waste and its fragments (microplastics; <5 mm) have been observed in almost all types of environments. However, the mechanisms underlying the flow and transport processes of plastics are unknown. This is particularly valid for river sediments, where complex interactions occur between particles and influence their vertical and horizontal distribution patterns. In this study, we investigated the vertical redistribution of 14 pristine microplastics (MPs) with different densities, sizes, and shapes within disturbed sediment without lateral transport (i.e., low-velocity flow). MPs were spiked into sediments (height: 8 cm) in a column with a height of 1 m (diameter: 6 cm) filled to the top with water. The sediment was perturbed by turning the column upside-down to simulate remobilization and the subsequent deposition of sediment. After the complete sedimentation of the particles, the water column was filtered and the sediment was cut into vertical sections. MPs were then extracted from the sediment using sieves and a density separation method, and were counted under a stereomicroscope. Low-density polymers were mainly recovered in the water column and at the surface of the sediment, whereas high-density polymers were found within all sediment sections. The vertical distribution of high-density polymers changes primarily with the sediment grain size. The distribution of each polymer type changes depending on the size and/or shape of the particles with complex interactions. The observed distributions were compared with the expected distributions based only on the vertical velocity formulas. Overall, the formulas used did not explain the sedimentation of a portion of low-density polymers and predicted a lower distribution in the sediment than those observed in the experiment. In conclusion, this study highlights the importance of considering MPs as multi-dimensional particles and provides clues to understand their fate in low-velocity flow systems, considering that they undergo scavenging in sediments.
Показать больше [+] Меньше [-]Responses to herbicides of Arctic and temperate microalgae grown under different light intensities
2023
Du, Juan | Izquierdo, Disney | Xu, Hai-feng | Beisner, Beatrix | Lavaud, Johann | Ohlund, Leanne | Sleno, Lekha | Juneau, Philippe
In aquatic ecosystems, microalgae are exposed to light fluctuations at different frequencies due to daily and seasonal changes. Although concentrations of herbicides are lower in Arctic than in temperate regions, atrazine and simazine, are increasingly found in northern aquatic systems because of long-distance aerial dispersal of widespread applications in the south and antifouling biocides used on ships. The toxic effects of atrazine on temperate microalgae are well documented, but very little is known about their effects on Arctic marine microalgae in relation to their temperate counterparts after light adaptation to variable light intensities. We therefore investigated the impacts of atrazine and simazine on photosynthetic activity, PSII energy fluxes, pigment content, photoprotective ability (NPQ), and reactive oxygen species (ROS) content under three light intensities. The goal was to better understand differences in physiological responses to light fluctuations between Arctic and temperate microalgae and to determine how these different characteristics affect their responses to herbicides. The Arctic diatom Chaetoceros showed stronger light adaptation capacity than the Arctic green algae Micromonas. Atrazine and simazine inhibited the growth and photosynthetic electron transport, affected the pigment content, and disturbed the energy balance between light absorption and utilization. As a result, during high light adaptation and in the presence of herbicides, photoprotective pigments were synthesized and NPQ was highly activated. Nevertheless, these protective responses were insufficient to prevent oxidative damage caused by herbicides in both species from both regions, but at different extent depending on the species. Our study demonstrates that light is important in regulating herbicide toxicity in both Arctic and temperate microalgal strains. Moreover, eco-physiological differences in light responses are likely to support changes in the algal community, especially as the Arctic ocean becomes more polluted and bright with continued human impacts.
Показать больше [+] Меньше [-]First Assessment of Rare Earth Element Organotropism in Solea Solea in a Coastal Area: The West Gironde Mud Patch (France)
2023
Labassa, Maëva | Pereto, Clément | Schäfer, Jörg | Hani, Younes M.i. | Baudrimont, Magalie | Bossy, Cécile | Dassié, Émilie P. | Mauffret, Aourell | Deflandre, Bruno | Gremare, Antoine | Coynel, Alexandra
Few studies exist on bioaccumulation and internal distribution of Rare Earth Elements (REEs) in marine fishes. REEs organotropism was determined in common sole (Solea solea) from the West Gironde Mud Patch (WGMP; N-E Atlantic Coast, France). The highest REEs concentrations occurred in liver (213 ± 49.8 µg kg-1 DW) and gills (119 ± 77.5 µg kg-1 DW) followed by kidneys (57.7 ± 25.5 µg kg-1 DW), whereas the lowest levels were in muscles (4.38 ± 1.20 µg kg-1 DW) of Solea solea. No significant age- or sex-related differences were observed. The organotropism varied among groups of REEs. Light and heavy REEs preferentially accumulated in liver and gills, respectively. All considered organs showed different normalized REEs patterns, suggesting differences in internal distribution processes between organs. Further work should address: (1) baseline levels worldwide, and (2) factors controlling uptake and organ-specific bioaccumulation of REEs.
Показать больше [+] Меньше [-]Insights into the molecular mechanisms of pesticide tolerance in the Aporrectodea caliginosa earthworm
2023
Barranger, Audrey | Klopp, Christophe | Le Bot, Barbara | Saramito, Gaëlle | Dupont, Lise | Llopis, Stéphanie | Wiegand, Claudia | Binet, Françoise
Diffuse pollution of the environment by pesticides has become a major soil threat to non-target organisms, such as earthworms for which declines have been reported. However some endogeic species are still abundant and persist in intensively cultivated fields, suggesting they become tolerant to long-term anthropogenic pressure. We thus considered the working hypothesis that populations of Aporrectodea caliginosa earthworms from conventionally managed fields developed a tolerance to pesticides compared with those from organically managed fields. To investigate this hypothesis, we studied earthworm populations of the same genetic lineage from soils that were either lowly or highly contaminated by pesticides to detect any constitutive expression of differentially expressed molecular pathways between these populations. Earthworm populations were then experimentally exposed to a fungicide—epoxiconazole—in the laboratory to identify different molecular responses when newly exposed to a pesticide. State-of-the-art omics technology (RNA sequencing) and bioinformatics were used to characterize molecular mechanisms of tolerance in a non-targeted way. Additional physiological traits (respirometry, growth, bioaccumulation) were monitored to assess tolerance at higher levels of biological organization. In the present study, we generated the de novo assembly transcriptome of A. caliginosa consisting of 64,556 contigs with N50 = 2862 pb. In total, 43,569 Gene Ontology terms were identified for 21,593 annotated sequences under the three main ontologies (biological processes, cellular components and molecular functions). Overall, we revealed that two same lineage populations of A. caliginosa earthworms, inhabiting similar pedo-climatic environment, have distinct gene expression pathways after they long-lived in differently managed agricultural soils with a contrasted pesticide exposure history for more than 22 years. The main difference was observed regarding metabolism, with upregulated pathways linked to proteolytic activities and the mitochondrial respiratory chain in the highly exposed population. This study improves our understanding of the long-term impact of chronic exposure of soil engineers to pesticide residues.
Показать больше [+] Меньше [-]Isotopic (Cu, Zn, and Pb) and elemental fingerprints of antifouling paints and their potential use for environmental forensic investigations
2023
Jeong, Hyeryeong | Ferreira Araujo, Daniel | Knoery, Joël | Briant, Nicolas | Ra, Kongtae
Antifouling paints (APs) are one of the important sources of Cu and Zn contamination in coastal environments. This study applied for the first-time a multi-isotope (Cu, Zn, and Pb) and multi-elemental characterization of different AP brands to improve their tracking in marine environments. The Cu and Zn contents of APs were shown to be remarkably high ∼35% and ∼8%, respectively. The δ65CuAE647, δ66ZnIRMM3702, and 206Pb/207Pb of the APs differed depending on the manufacturers and color (−0.16 to +0.36‰, −0.34 to +0.03‰, and 1.1158 to 1.2140, respectively). A PCA analysis indicates that APs, tires, and brake pads have also distinct elemental fingerprints. Combining isotopic and elemental ratios (e.g., Zn/Cu) allows to distinguish the environmental samples. Nevertheless, a first attempt to apply this approach in highly urbanized harbor areas demonstrates difficulties in source apportionments, because the sediment was chemically and isotopically homogeneous. The similarity of isotope ranges between the harbor and non-exhaust traffic emission sources suggests that most metals are highly affected by urban runoff, and that APs are not the main contributors of these metals. It is suspected that AP-borne contamination should be punctual rather than dispersed, because of APs low solubility properties. Nevertheless, this study shows that the common coastal anthropogenic sources display different elemental and isotopic fingerprints, hence the potential for isotope source tracking applications in marine environments. Further study cases, combined with laboratory experiments to investigate isotope fractionation during releasing the metal sources are necessary to improve non-traditional isotope applications in environmental forensics.
Показать больше [+] Меньше [-]