Уточнить поиск
Результаты 1-10 из 846
Effect of pH on chemical forms and plant availability of cadmium, zinc, and lead in polluted soils.
1989
Xian X.F. | Shokohifard G.I.
Soil type and growing conditions influence uptake and translocation of organochlorine (chlordecone) by cucurbitaceae species
2014
Clostre F. | Letourmy P. | Turpin B. | Carles C. | Lesueur Jannoyer M.
Chlordecone (CLD), an organochlorine insecticide, and other persistent organic pollutants continue to contaminate the environment worldwide and have adverse effects on human health through food exposure. Cucurbitaceae take up weathered hydrophobic pollutants from the soil and translocate them to their shoots. As Cucurbitaceae are an important part of the diet in the French West Indies, they are among the main contributors to total dietary intake of CLD. We analyzed the contamination by CLDs (CLD and 5b-hydroCLD) of four cucurbits grown in the field and/or in the greenhouse. Different physiological (crop species) and environmental (soil type, growth conditions) variables were shown to influence uptake of the pollutant from the soil by the crop. Cucurbita species (zucchini and pumpkin) were more contaminated than Cucumis sativus (cucumber), and Sechium edule (christophine or chayote) translocated CLDs to fruits very poorly compared with cucumber and pumpkin. Greenhouse conditions and non-allophanic (nitisols and ferralsols) soils favored plant contamination more than field conditions and allophanic soils (andosols). (Résumé d'auteur)
Показать больше [+] Меньше [-]Thermodynamics and kinetic processes at coal interface for CO2 geological storage
2008
Charriere, Delphine | Pokryszka, Zbigniew | Behra, Philippe
Currently, the geological storage of CO2 is heavily studied around the world in order to limit global warming due to the greenhouse effect. The atmospheric CO2, which has been steadily increasing for more than a century, is assumed to be in a large part responsible of this warming. Nowadays, various options have been considering to store CO2 in an underground environment for periods covering several centuries. Among the options, one is to inject it in unexploited coal seams. The objective of our work is to characterise the interactions between CO2 ans coal interfaces from two French coal seams. This will contribute to identify the most adapted coal basin which could be used for storing CO2 in France.
Показать больше [+] Меньше [-]Thermodynamics and kinetic processes at coal interface for CO2 geological storage
2008
Charriere, Delphine | Pokryszka, Zbigniew | Behra, Philippe | Institut National de l'Environnement Industriel et des Risques (INERIS) | Chimie Agro-Industrielle (CAI) ; Institut National de la Recherche Agronomique (INRA)-Ecole nationale supérieure des ingénieurs en arts chimiques et technologiques (ENSIACET) ; Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Institut National Polytechnique (Toulouse) (Toulouse INP) ; Université de Toulouse (UT)-Université de Toulouse (UT)
Currently, the geological storage of CO2 is heavily studied around the world in order to limit global warming due to the greenhouse effect. The atmospheric CO2, which has been steadily increasing for more than a century, is assumed to be in a large part responsible of this warming. Nowadays, various options have been considering to store CO2 in an underground environment for periods covering several centuries. Among the options, one is to inject it in unexploited coal seams. The objective of our work is to characterise the interactions between CO2 ans coal interfaces from two French coal seams. This will contribute to identify the most adapted coal basin which could be used for storing CO2 in France.
Показать больше [+] Меньше [-]Opposite impact of DOM on ROS generation and photoaging of aromatic and aliphatic nano- and micro-plastic particles
2022
Cao, Runzi | Liu, Xinna | Duan, Jiajun | Gao, Bowen | He, Xiaosong | Nanthi Bolan, | Li, Yang
Dissolved organic matter (DOM) plays a significant role in the photochemical behavior of nano- and micro-plastic particles (NPs/MPs). We investigated the influence of DOM on the mechanism on the photoaging of NPs/MPs with different molecular structures under UV₃₆₅ irradiation in water. DOM components used in this study are mainly humic acid and fulvic acid. The results showed that DOM promoted the weathering of aliphatic NPs/MPs (polypropylene (PP)), but inhibited or had only a minor effect on the photoaging of aromatic NPs/MPs (polystyrene (PS) NPs/MPs, carboxyl-modified PS NPs, amino-modified PS NPs, and polycarbonate MPs). NPs with a large surface area may adsorb sufficient DOM on the particle surfaces through π-π interactions, which competes with NPs for photon absorption sites, thus, can delay the photoaging of PS NPs. Aromatic MPs may release phenolic compounds that quench •OH, thereby weakening the photoaging process. For aliphatic MPs, the detection of peracid, aldehyde, and ketone groups on the polymer surface indicated that DOM promoted weathering of PP MPs, which was primarily because the generation of •OH due to DOM photolysis may attack the polymer by C–C bond cleavage and hydrogen extraction reactions. This study provides insight into the UV irradiation weathering process of NPs/MPs of various compositions and structures, which are globally distributed in water.
Показать больше [+] Меньше [-]Insight into the uptake, accumulation, and metabolism of the fungicide phenamacril in lettuce (Lactuca sativa L.) and radish (Raphanus sativus L.)
2022
Tao, Yan | Xing, Yinghui | Jing, Junjie | Yu, Pingzhong | He, Min | Zhang, Jinwei | Chen, Li | Jia, Chunhong | Zhao, Ercheng
The fungal species Fusarium can cause devastating disease in agricultural crops. Phenamacril is an extremely specific cyanoacrylate fungicide and a strobilurine analog that has excellent efficacy against Fusarium. To date, information on the mechanisms involved in the uptake, accumulation, and metabolism of phenamacril in plants is scarce. In this study, lettuce and radish were chosen as model plants for a comparative analysis of the absorption, accumulation, and metabolic characteristics of phenamacril from a polluted environment. We determined the total amount of phenamacril in the plant-water system by measuring the concentrations in the solution and plant tissues at frequent intervals over the exposure period. Phenamacril was readily taken up by the plant roots with average root concentration factor ranges of 60.8–172.7 and 16.4–26.9 mL/g for lettuce and radish, respectively. However, it showed limited root-to-shoot translocation. The lettuce roots had a 2.8–12.4-fold higher phenamacril content than the shoots; whereas the radish plants demonstrated the opposite, with the shoots having 1.5 to 10.0 times more phenamacril than the roots. By the end of the exposure period, the mass losses from the plant-water systems reached 72.0% and 66.3% for phenamacril in lettuce and radish, respectively, suggesting evidence of phenamacril biotransformation. Further analysis confirmed that phenamacril was metabolized via hydroxylation, hydrolysis of esters, demethylation, and desaturation reactions, and formed multiple transformation products. This study furthers our understanding of the fate of phenamacril when it passes from the environment to plants and provides an important reference for its scientific use and risk assessment.
Показать больше [+] Меньше [-]Distribution of rare earth elements (REEs) and their roles in plant growth: A review
2022
Tao, Yue | Shen, Lu | Feng, Chong | Yang, Rongyi | Qu, Jianhua | Ju, Hanxun | Zhang, Ying
The increasing use of rare earth elements (REEs) in various industries has led to a rise in discharge points, thus increasing discharge rates, circulation, and human exposure. Therefore, REEs have received widespread attention as important emerging pollutants. This article thus summarizes and discusses the distribution and occurrence of REEs in the world's soil and water, and briefly introduces current REEs content analysis technology for the examination of different types of samples. Specifically, this review focuses on the impact of REEs on plants, including the distribution and fractionation of REEs in plants and their bioavailability, the effect of REEs on seed germination and growth, the role of REEs in plant resistance, the physiological and biochemical responses of plants in the presence of REEs, including mineral absorption and photosynthesis, as well as a description of the substitution mechanism of REEs competing for Ca in plant cells. Additionally, this article summarizes the potential mechanisms of REEs to activate endocytosis in plants and provides some insights into the mechanisms by which REEs affect endocytosis from a cell and molecular biology perspective. Finally, this article discusses future research prospects and summarizes current scientific findings that could serve as a basis for the development of more sustainable rare earth resource utilization strategies and the assessment of REEs in the environment.
Показать больше [+] Меньше [-]A review of the influence of nanoparticles on the physiological and biochemical attributes of plants with a focus on the absorption and translocation of toxic trace elements
2022
Rahman, Shafeeq Ur | Wang, Xiaojie | Shahzād, Muḥammad | Bashir, Owais | Li, Yanliang | Cheng, Hefa
Trace elements (TEs) from various natural and anthropogenic activities contaminate the agricultural water and soil environments. The use of nanoparticles (NPs) as nano-fertilizers or nano-pesticides is gaining popularity worldwide. The NPs-mediated fertilizers encourage the balanced availability of essential nutrients to plants compared to traditional fertilizers, especially in the presence of excessive amounts of TEs. Moreover, NPs could reduce and/or restrict the bioavailability of TEs to plants due to their high sorption ability. In this review, we summarize the potential influence of NPs on plant physiological attributes, mineral absorption, and TEs sorption, accumulation, and translocation. It also unveils the NPs-mediated TE scavenging-mechanisms at plant and soil interface. NPs immobilized TEs in soil solution effectively by altering the speciation of TEs and modifying the physiological, biochemical, and biological properties of soil. In plants, NPs inhibit the transfer of TEs from roots to shoots by inducing structural modifications, altering gene transcription, and strengthening antioxidant defense mechanisms. On the other hand, the mechanisms underpinning NPs-mediated TEs absorption and cytotoxicity mitigation differ depending on the NPs type, distribution strategy, duration of NP exposure, and plants (e.g., types, varieties, and growth rate). The review highlights that NPs may bring new possibilities for resolving the issue of TE cytotoxicity in crops, which may also assist in reducing the threats to the human dietary system. Although the potential ability of NPs in decontaminating soils is just beginning to be understood, further research is needed to uncover the sub-cellular-based mechanisms of NPs-induced TE scavenging in soils and absorption in plants.
Показать больше [+] Меньше [-]Vehicle exhausts contribute high near-UV absorption through carbonaceous aerosol during winter in a fast-growing city of Sichuan Basin, China
2022
Liu, Song | Luo, Tianzhi | Zhou, Li | Song, Tianli | Wang, Ning | Luo, Qiong | Huang, Gang | Jiang, Xia | Zhou, Shuhua | Qiu, Yang | Yang, Fumo
Carbonaceous aerosols pose significant climatic impact, however, their sources and respective contribution to light absorption vary and remain poorly understood. In this work, filter-based PM₂.₅ samples were collected in winter of 2021 at three urban sites in Yibin, a fast-growing city in the south of Sichuan Basin, China. The composition characteristics of PM₂.₅, light absorption and source of carbonaceous aerosol were analyzed. The city-wide average concentration of PM₂.₅ was 87.4 ± 31.0 μg/m³ in winter. Carbonaceous aerosol was the most abundant species, accounting for 42.5% of the total PM₂.₅. Source apportionment results showed that vehicular emission was the main source of PM₂.₅ during winter, contributing 34.6% to PM₂.₅. The light absorption of black carbon (BC) and brown carbon (BrC) were derived from a simplified two-component model. We apportioned the light absorption of carbonaceous aerosols to BC and BrC using the Least Squares Linear Regression with optimal angstrom absorption exponent of BC (AAEBC). The average absorption of BC and BrC at 405 nm were 51.6 ± 21.5 Mm⁻¹ and 17.7 ± 8.0 Mm⁻¹, respectively, with mean AAEBC = 0.82 ± 0.02. The contribution of BrC to the absorption of carbonaceous reached 26.1% at 405 nm. Based on the PM₂.₅ source apportionment and the mass absorption cross-section (MAC) value of BrC at 405 nm, vehicle emission was found to be the dominant source of BrC in winter, contributing up to 56.4%. Therefore, vehicle emissions mitigation should be the primary and an effective way to improve atmospheric visibility in this fast-developing city.
Показать больше [+] Меньше [-]Light absorption potential of water-soluble organic aerosols in the two polluted urban locations in the central Indo-Gangetic Plain
2022
Rajeev, Pradhi | Choudhary, Vikram | Chakraborty, Abhishek | Singh, Gyanesh Kumar | Gupta, Tarun
PM₂.₅ (particulate matter having aerodynamic diameter ≤2.5 μm) samples were collected during wintertime from two polluted urban sites (Allahabad and Kanpur) in the central Indo-Gangetic Plain (IGP) to comprehend the sources and atmospheric transformations of light-absorbing water-soluble organic aerosol (WSOA). The aqueous extract of each filter was atomized and analyzed in a high-resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). Water-soluble organic carbon (WSOC) and WSOA concentrations at Kanpur were ∼1.2 and ∼1.5 times higher than that at Allahabad. The fractions of WSOC and secondary organic carbon (SOC) to total organic carbon (OC) were also significantly higher ∼53% and 38%, respectively at Kanpur compared to Allahabad. This indicates a higher abundance of oxidized WSOA at Kanpur. The absorption coefficient (bₐbₛ₋₃₆₅) of light-absorbing WSOA measured at 365 nm was 46.5 ± 15.5 Mm⁻¹ and 73.2 ± 21.6 Mm⁻¹ in Allahabad and Kanpur, respectively, indicating the dominance of more light-absorbing fractions in WSOC at Kanpur. The absorption properties such as mass absorption efficiency (MAE₃₆₅) and imaginary component of refractive index (kₐbₛ₋₃₆₅) at 365 nm at Kanpur were also comparatively higher than Allahabad. The absorption forcing efficiency (Abs SFE; indicates warming effect) of WSOA at Kanpur was ∼1.4 times higher than Allahabad. Enhancement in light absorption capacity was observed with the increase in f44/f43 (fraction of m/z 44 (f44) to 43 (f43) in organic mass spectra) and O/C (oxygen to carbon) ratio of WSOA at Kanpur while no such trend was observed for the Allahabad site. Moreover, the correlation between carbon fractions and light absorption properties suggested the influence of low-volatile organic compounds (OC3 + OC4 fraction obtained from thermal/optical carbon analyzer) in increasing the light absorption capacity of WSOA in Kanpur.
Показать больше [+] Меньше [-]