Уточнить поиск
Результаты 1-10 из 302
Pluies acides, production de nitrate dans les sols forestiers et annees de secheresse estivale: cofacteurs de risque de deperissement des forets. Reflexions sur la synergie.
1989
Bardy J.A.
Simulation of the long-term soil response to acid deposition in various buffer ranges.
1989
Vries W. de | Posch M. | Kaemaeri J.
Acidity of size-fractionated aerosol particles.
1990
Ludwig J. | Klemm O.
Operational liming of surface waters in Sweden.
1988
Nyberg P. | Thoerneloef E.
Quantifying source and dynamics of acidic pollution in a coastal acid sulphate soil area
2013
Phong, N.D. | To Phuc Tuong | Phu, N.D. | Nang, N.D. | Hoanh, Chu Thai
The in-depth knowledge on management and reducing annual acidic pollution is important for improving the sustainable livelihood of people living in areas with acid sulphate soils (ASS). This study involved a long-term (2001-2006), large-scale canal water quality monitoring network (87 locations) and a field experiment at nine sites to quantify the dynamic variability of acidic pollution and its source in a coastal area with ASS in the Mekong River Delta of Vietnam. Widespread acidic pollution (pH <5) of surface water occurred at the beginning of the rainy season, while pH of the canal water remained high (7-8) at the end of the rainy season and during the dry season. The study identified canal embankment deposits, made of ASS spoils from canal dredging/excavation, as the main source of acidic pollution in the surrounding canal network. The findings suggested that there was a linkage between the amount of acidic loads into canal networks and the age of the embankment deposits. The most acute pollution (pH ~ 3) occurred in canals with sluggish tidal water flow, at 1-2 years after the deposition of excavated spoils onto the embankments in ASS. The amount of acidic loads transferred to the canal networks could be quantified from environmental parameters, including cumulative rainfall, soil type and age of embankment deposits. The study implied that dredging/excavation of canals in ASS areas must be carried out judiciously as these activities may increase the source of acidic pollution to the surrounding water bodies.
Показать больше [+] Меньше [-]Elevated particle acidity enhanced the sulfate formation during the COVID-19 pandemic in Zhengzhou, China
2022
Yang, Jieru | Wang, Shenbo | Zhang, Ruiqin | Yin, Shasha
The significant reduction in PM₂.₅ mass concentration after the outbreak of COVID-19 provided a unique opportunity further to study the formation mechanism of secondary inorganic aerosols. Hourly data of chemical components in PM₂.₅, gaseous pollutants, and meteorological data were obtained from January 1 to 23, 2020 (pre-lockdown) and January 24 to February 17, 2020 (COVID-lockdown) in Zhengzhou, China. Sulfate, nitrate, and ammonium were the main components of PM₂.₅ during both the pre-lockdown and COVID-lockdown periods. Compared with the pre-lockdown period, even though the concentration and proportion of nitrate decreased, nitrate was the dominant component in PM₂.₅ during the COVID-lockdown period. Moreover, nitrate production was enhanced by the elevated O₃ concentration, which was favorable for the homogeneous and hydrolysis nitrate formation despite the drastic decrease of NO₂. The proportion of sulfate during the COVID-lockdown period was higher than that before. Aqueous-phase reactions of H₂O₂ and transition metal (TMI) catalyzed oxidations were the major pathways for sulfate formation. During the COVID-lockdown period, TMI-catalyzed oxidation became the dominant pathway for aqueous-phase sulfate formation because the elevated acidity favored the dissolution of TMI. Therefore, the enhanced TMI-catalyzed oxidation affected by the elevated particle acidity dominated the sulfate formation, resulting in the slight increase of sulfate concentration during the COVID-lockdown period in Zhengzhou.
Показать больше [+] Меньше [-]Bacterial diversity in typical abandoned multi-contaminated nonferrous metal(loid) tailings during natural attenuation
2019
Liu, Jian-li | Yao, Jun | Wang, Fei | Min, Ning | Gu, Ji-hai | Li, Zi-fu | Sunahara, Geoffrey | Duran, Robert | Solevic-Knudsen, Tatjana | Hudson-Edwards, K. A. (Karen A.) | Alakangas, Lena
Abandoned nonferrous metal(loid) tailings sites are anthropogenic, and represent unique and extreme ecological niches for microbial communities. Tailings contain elevated and toxic content of metal(loid)s that had negative effects on local human health and regional ecosystems. Microbial communities in these typical tailings undergoing natural attenuation are often very poorly examined. The diversity and inferred functions of bacterial communities were examined at seven nonferrous metal(loid) tailings sites in Guangxi (China), which were abandoned between 3 and 31 years ago. The acidity of the tailings sites rose over 31 years of site inactivity. Desulfurivibrio, which were always coupled with sulfur/sulfide oxidation to dissimilate the reduction of nitrate/nitrite, were specific in tailings with 3 years abandonment. However, genus beneficial to plant growth (Rhizobium), and iron/sulfur-oxidizing bacteria and metal(loid)-related genera (Acidiferrobacter and Acidithiobacillus) were specific within tailings abandoned for 23 years or more. The increased abundance of acid-generating iron/sulfur-oxidizing and metal(loid)-related bacteria and specific bacterial communities during the natural attenuation could provide new insights for understanding microbial ecosystem functioning in mine tailings. OTUs related to Sulfuriferula, Bacillus, Sulfurifustis, Gaiella, and Thiobacillus genera were the main contributors differentiating the bacterial communities between the different tailing sites. Multiple correlation analyses between bacterial communities and geochemical parameters indicated that pH, TOC, TN, As, Pb, and Cu were the main drivers influencing the bacterial community structures. PICRUSt functional exploration revealed that the main functions were related to DNA repair and recombination, important functions for bacterial adaptation to cope with the multi-contamination of tailings. Such information provides new insights to guide future metagenomic studies for the identification of key functions beyond metal-transformation/resistance. As well, our results offers novel outlooks for the management of bacterial communities during natural attenuation of multi-contaminated nonferrous metal(loid) tailings sites.
Показать больше [+] Меньше [-]Efficient degradation of AO7 by ceria-delafossite nanocomposite with non-inert support as a synergistic catalyst in electro-fenton process
2019
Nazari, Pegah | Tootoonchian, Pedram | Setayesh, Shahrbanoo Rahman
CuFeO₂/CeO₂ as a novel catalyst was synthesized and its catalytic performance was evaluated for electro-Fenton degradation of acid orange 7 (AO7). It was demonstrated from the characterization results that the rhombohedral structure of CuFeO₂ and face-centered cubic fluorite structure of CeO₂ remained stable after nanocomposite construction. The impact of such operating parameters as pH, current intensity and, catalyst amount was investigated and the optimum conditions (100 mgL⁻¹ AO7, pH 3, 150 mgL⁻¹ CuFeO₂/CeO₂, I: 150 mA) determination led to 99.3% AO7 removal and 79.1% COD removal in 60 min. The introduction of CeO₂ as non-inert support had a significant impact on H₂O₂ electro-generation as an important step in AO7 removal. CuFeO₂/CeO₂ presented negligible metal leaching (iron 4.13%, copper 2.4%, and cerium 0.33%) which could be due to the strong interaction between active species and support. The nanocomposite performed efficiently in salty systems and two samples of real wastewaters due to Brønsted acidity character of ceria, which makes it a potential choice in industrial applications. The good performance of nanocomposite could be the result of the synergistic effect between Fe, Cu, and Ce. Regarding scavenging measurements results, the electro-Fenton process followed the Haber-Weiss mechanism. The by-products detection was performed using GC-MS analysis to propose an acceptable pathway for EF degradation of AO7. The BMG kinetics model (1/b = 0.969 (min) and 1/m = 0.269 (min⁻¹)) was matched with the experimental data and described the kinetics of reaction very well. The catalytic activity of CuFeO₂/CeO₂ almost remained after six cycles. Based on the obtained results, CuFeO₂/CeO₂ using the benefit of the synergistic effect of Ce³⁺ with Fe²⁺ and Cu⁺can be introduced as a promising novel catalyst for the electro-Fenton reaction in wastewater treatment.
Показать больше [+] Меньше [-]Seasonal variabilities in chemical compounds and acidity of aerosol particles at urban site in the west Pacific
2018
Pan, Xiaole | Uno, Itsushi | Wang, Zhe | Yamamoto, Shigekazu | Hara, Yukari | Wang, Zifa
Mass concentrations of chemical compounds in both PM2.5 (particle aerodynamic diameter, Dp < 2.5 μm) and PM2.5-10 (2.5 < Dp < 10 μm), and acidity of aerosol particles were measured at an urban site in western Japan using a continuous dichotomous Aerosol Chemical Speciation Analyzer (ACSA-12) throughout 2014. Mass concentrations of both PM2.5 and sulfate had distinct seasonal variabilities with maxima in spring and winter, mostly due to long-range transport with the prevailing westerly wind. Mass concentration of nitrate in PM2.5 (fNO3) showed an obvious warm-season-low and cold-season-high pattern as a result of both gas-aerosol phase equilibrium processes under high temperature conditions as well as transport. Nitrate in PM2.5-10 (cNO3) increased during long-range transport of dust, implying the great importance of heterogeneous processes at the surface of coarse mode particles. In this study, Δ[H+] (derived from the difference in pH of extract liquid with/without sampling) was used to indicate the acidity of particles. We found that acidity of particles in PM2.5 (fΔH) was mostly positive with a maximum in August because of the large fraction of nitrate and sulfate. Acidity of particles in PM2.5-10 (cΔH) was negative in winter and spring due to presence of alkaline matter from crustal sources. This study highlights the great importance of anthropogenic pollutants on the acidity of particles in the western Pacific Ocean and further impact on the marine environment and climate.
Показать больше [+] Меньше [-]Comparison of the impacts of acid and nitrogen additions on carbon fluxes in European conifer and broadleaf forests
2018
Oulehle, Filip | Tahovská, Karolina | Chuman, Tomáš | Evans, C. D. (Chris D.) | Hruška, Jakub | Růžek, Michal | Bárta, Jiří
Increased reactive nitrogen (N) loadings to terrestrial ecosystems are believed to have positive effects on ecosystem carbon (C) sequestration. Global “hot spots” of N deposition are often associated with currently or formerly high deposition of sulphur (S); C fluxes in these regions might therefore not be responding solely to N loading, and could be undergoing transient change as S inputs change. In a four-year, two-forest stand (mature Norway spruce and European beech) replicated field experiment involving acidity manipulation (sulphuric acid addition), N addition (NH4NO3) and combined treatments, we tested the extent to which altered soil solution acidity or/and soil N availability affected the concentration of soil dissolved organic carbon (DOC), soil respiration (Rs), microbial community characteristics (respiration, biomass, fungi and bacteria abundances) and enzyme activity. We demonstrated a large and consistent suppression of soil water DOC concentration driven by chemical changes associated with increased hydrogen ion concentrations under acid treatments, independent of forest type. Soil respiration was suppressed by sulphuric acid addition in the spruce forest, accompanied by reduced microbial biomass, increased fungal:bacterial ratios and increased C to N enzyme ratios. We did not observe equivalent effects of sulphuric acid treatments on Rs in the beech forest, where microbial activity appeared to be more tightly linked to N acquisition. The only changes in C cycling following N addition were increased C to N enzyme ratios, with no impact on C fluxes (either Rs or DOC). We conclude that C accumulation previously attributed solely to N deposition could be partly attributable to their simultaneous acidification.
Показать больше [+] Меньше [-]