Уточнить поиск
Результаты 1-3 из 3
Prevention and management of plant protection product transfers within the environment: A review
2024
Tournebize, Julien | Bedos, Carole | Corio-Costet, Marie-France | Douzals, Jean-Paul | Gouy, Véronique | Le Bellec, Fabrice | Achard, Anne-Laure | Mamy, Laure
The intensification of agriculture has promoted the simplification and specialization of agroecosystems, resulting in negative impacts such as decreasing landscape heterogeneity and increasing use of plant protection products (PPP), with the acceleration of PPP transfers to environmental compartments and loss in biodiversity. In this context, the present work reviews the various levers for action promoting the prevention and management of these transfers in the environment and the available modelling tools. Two main categories of levers were identified: (1) better control of the application, including the reduction of doses and of PPP dispersion during application thanks to appropriate equipment and settings, PPP formulations and consideration of meteorological conditions; (2) reduction of post-application transfers at plot scales (soil cover, low tillage, organic matter management, remediation etc. and at landscape scales using either dry (grassed strips, forest, hedgerows and ditches) or wet (ponds, mangroves and stormwater basins) buffer zones. The management of PPP residues leftover in the spray tanks (biobeds) also represents a lever for limiting point-source PPP pollution. Numerous models have been developed to simulate the transfers of PPPs at plot scales. They are scarce for landscape scales. A few are used for regulatory risk assessment. These models could still be improved, for example, if current agricultural practices (e.g. agro-ecological practices and biopesticides), and their effect on PPP transfers were better described. If operated alone, none of the levers guarantee a zero risk of PPP transfer. However, if levers are applied in a combined manner, PPP transfers could be more easily limited (agricultural practices, landscape organization etc.).
Показать больше [+] Меньше [-]Toward a consistent accounting of water as a resource and a vector of pollution in the LCA of agricultural products: Methodological development and application to a perennial cropping system
2015
Payen S.
Identifying the environmental hot spots of agriculture is crucial in a context where humanity has to produce more food and pollute less. Life Cycle Assessment (LCA) is a powerful tool to evaluate the environmental impacts of agricultural systems, but is still fraught with shortcomings, notably for the evaluation of impacts of freshwater use and of salinisation of water and soil. The core complexity lies in the double status of water and soil resources in LCA which are both a resource and a compartment. The three questions answered by the thesis were: How to better assess the impacts associated with water and salts fluxes? What model should be developed for a relevant inventory of field water and salts fluxes? Is the developed model operational for an LCA study on a perennial crop? The first question was answered through a literature review on salinisation impacts in LCA. It revealed the main environmental mechanisms of salinisation, the factors involved, and discussed the soil and water status, notably through a consistent definition of the technosphere and ecosphere boundary. To answer the second question, a critical analysis of water inventory and agri-food LCA databases showed their inadequacy for the LCA-based ecodesign of cropping systems: they provide estimates of theoretical water consumed, rely on data and methods presenting limitations, and do not support the calculation of both consumptive and degradative water use impacts. For the LCA-based ecodesign of cropping systems, the inventory of water flows should be based on a model simulating evapotranspiration, deep percolation and runoff accounting for crop specificities, pedo-climatic conditions and agricultural managements. For herbaceous crops, the FAO Aquacrop model constitutes a relevant and operational model, but no dedicated model is available to-date for perennials. To fill this gap, a tailored and simple model, so called E.T., was elaborated for the inventory of field water and salt flows for annual
Показать больше [+] Меньше [-]Reduced pesticide bioavailability in soil by organic amendment
2016
Woignier T. | Clostre F. | Fernandes P. | Soler A. | Rangon L. | Lesueur Jannoyer M.