Уточнить поиск
Результаты 1-10 из 134
Nano agrochemical zinc oxide influences microbial activity, carbon, and nitrogen cycling of applied manures in the soil-plant system
2022
Shah, Ghulam Mustafa | Ali, Hifsa | Ahmad, Iftikhar | Kāmrān, Muḥammad | Hammad, Mohkum | Shah, Ghulam Abbas | Bakhat, Hafiz Faiq | Waqar, Atika | Guo, Jianbin | Dong, Renjie | Rashid, Muhammad Imtiaz
The widespread use of nano-enabled agrochemicals in agriculture for remediating soil and improving nutrient use efficiency of organic and chemical fertilizers is increasing continuously with limited understanding on their potential risks. Recent studies suggested that nanoparticles (NPs) are harmful to soil organisms and their stimulated nutrient cycling in agriculture. However, their toxic effects under natural input farming systems are just at its infancy. Here, we aimed to examine the harmful effects of nano-agrochemical zinc oxide (ZnONPs) to poultry (PM) and farmyard manure (FYM) C and N cycling in soil-plant systems. These manures enhanced microbial counts, CO₂ emission, N mineralization, spinach yield and N recovery than control (unfertilized). Soil applied ZnONPs increased labile Zn in microbial biomass, conferring its consumption and thereby reduced the colony-forming bacterial and fungal units. Such effects resulted in decreasing CO₂ emitted from PM and FYM by 39 and 43%, respectively. Further, mineralization of organic N was reduced from FYM by 32%, and PM by 26%. This process has considerably decreased the soil mineral N content from both manure types and thereby spinach yield and plant N recoveries. In the ZnONPs amended soil, only about 23% of the applied total N from FYM and 31% from PM was ended up in plants, whereas the respective fractions in the absence of ZnONPs were 33 and 53%. Hence, toxicity of ZnONPs should be taken into account when recommending its use in agriculture for enhancing nutrient utilization efficiency of fertilizers or soil remediation purposes.
Показать больше [+] Меньше [-]Comprehensive analyses of agrochemicals affecting aquatic ecosystems: A case study of Odonata communities and macrophytes in Saga Plain, northern Kyushu, Japan
2022
Tazunoki, Yuhei | Tokuda, Makoto | Sakuma, Ayumi | Nishimuta, Kou | Oba, Yutaro | Kadokami, Kiwao | Miyawaki, Takashi | Ikegami, Makihiko | Ueno, Daisuke
The negative influence of agrochemicals (pesticides: insecticide, fungicide, and herbicide) on biodiversity is a major ecological concern. In recent decades, many insect species are reported to have rapidly declined worldwide, and pesticides, including neonicotinoids and fipronil, are suspected to be partially responsible. In Japan, application of systemic insecticides to nursery boxes in rice paddies is considered to have caused rapid declines in Sympetrum (Odonata: Libellulidae) and other dragonfly and damselfly populations since the 1990s. In addition to the direct lethal effects of pesticides, agrochemicals indirectly affect Odonata populations through reductions in macrophytes, which provide a habitat, and prey organisms. Due to technical restrictions, most previous studies first selected target chemicals and then analyzed their influence on focal organisms at various levels, from the laboratory to the field. However, in natural and agricultural environments, various chemicals co-occur and can act synergistically. Under such circumstances, targeted analyses might lead to spurious correlations between a target chemical and the abundance of organisms. To address such problems, in this study we adopted a novel technique, “Comprehensive Target Analysis with an Automated Identification and Quantification System (CTA-AIQS)” to detect wide range of agrochemicals in water environment. The relationships between a wide range of pesticides and lentic Odonata communities were surveyed in agricultural and non-agricultural areas in Saga Plain, Kyushu, Japan. We detected significant negative relationships between several insecticides, i.e., acephate, clothianidin, dinotefuran, flubendiamide, pymetrozine, and thiametoxam (marginal for benthic odonates) and the abundance of lentic Epiprocta and benthic Odonates. In contrast, the herbicides we detected were not significantly related to the abundance of aquatic macrophytes, suggesting a lower impact of herbicides on aquatic vegetation at the field level. These results highlight the need for further assessments of the influence of non-neonicotinoid insecticides on aquatic organisms.
Показать больше [+] Меньше [-]Current status of microbes involved in the degradation of pharmaceutical and personal care products (PPCPs) pollutants in the aquatic ecosystem
2022
Narayanan, Mathiyazhagan | El-Sheekh, Mostafa | Ma, Ying | Pugazhendhi, Arivalagan | Natarajan, Devarajan | Kandasamy, Gajendiran | Raja, Rathinam | Saravana Kumar, R.M. | Kumarasamy, Suresh | Sathiyan, Govindasamy | Geetha, R. | Paulraj, Balaji | Liu, Guanglong | Kandasamy, Sabariswaran
Contamination of aquatic systems with pharmaceuticals, personal care products, steroid hormones, and agrochemicals has been an immense problem for the earth's ecosystem and health impacts. The environmental issues of well-known persistence pollutants, their metabolites, and other micro-pollutants in diverse aquatic systems around the world were collated and exposed in this review assessment. Waste Water Treatment Plant (WWTP) influents and effluents, as well as industrial, hospital, and residential effluents, include detectable concentrations of known and undiscovered persistence pollutants and metabolites. These components have been found in surface water, groundwater, drinking water, and natural water reservoirs receiving treated and untreated effluents. Several studies have found that these persistence pollutants, and also similar recalcitrant pollutants, are hazardous to a variety of non-targeted creatures in the environment. In human and animals, they can also have severe and persistent harmful consequences. Because these pollutants are harmful to aquatic organisms, microbial degradation of these persistence pollutants had the least efficiency. Fortunately, only a few wild and Genetically Modified (GMOs) microbial species have the ability to degrade these PPCPs contaminants. Hence, researchers have been studying the degradation competence of microbial communities in persistence pollutants of Pharmaceutical and Personal Care Products (PPCPs) and respective metabolites for decades, as well as possible degradation processes in various aquatic systems. As a result, this review provides comprehensive information about environmental issues and the degradation of PPCPs and their metabolites, as well as other micro-pollutants, in aquatic systems.
Показать больше [+] Меньше [-]Environmental monitoring and risk assessment in a tropical Costa Rican catchment under the influence of melon and watermelon crop pesticides
2021
Rodríguez-Rodríguez, Carlos E. | Matarrita, Jessie | Herrero-Nogareda, Laia | Pérez-Rojas, Greivin | Alpízar-Marín, Melvin | Chinchilla-Soto, Cristina | Pérez-Villanueva, Marta | Vega-Méndez, Dayana | Masís-Mora, Mario | Cedergreen, Nina | Carazo Rojas, Elizabeth
A monitoring network was established in streams within a catchment near the Costa Rican Pacific coast (2008–2011) to estimate the impact of pesticides in surface water (84 samples) and sediments (84 samples) in areas under the influence of melon and watermelon production. A total of 66 (water) and 47 (sediment) pesticides were analyzed, and an environmental risk assessment (ERA) was performed for four taxa (algae, Daphnia magna, fish and Chironomus riparius). One fungicide and seven insecticides were detected in water and/or sediment; the fungicide azoxystrobin (water) and the insecticide cypermethrin (sediments) were the most frequently detected pesticides. The insecticides endosulfan (5.76 μg/L) and cypermethrin (301 μg/kg) presented the highest concentrations in water and sediment, respectively. The ERA revealed acute risk in half of the sampling points of the melon-influenced area and in every sampling point from the watermelon-influenced area. Safety levels were exceeded within and around the crop fields, suggesting that agrochemical contamination was distributed along the catchment, with potential influence of nearby crops. Acute risk was caused by the insecticides chlorpyrifos, cypermethrin and endosulfan to D. magna, fish and C. riparius; the latter was the organism with the overall highest/continuous risk. High chronic risk was determined in all but one sampling point, and revealed a higher number of pesticides of concern. Cypermethrin was the only pesticide to pose chronic risk for all benchmark organisms. The results provide new information on the risk that tropical crops pose to aquatic ecosystems, and highlight the importance of including the analysis of sediment concentrations and chronic exposure in ERA.
Показать больше [+] Меньше [-]Emerging organic contaminants in groundwater under a rapidly developing city (Patna) in northern India dominated by high concentrations of lifestyle chemicals
2021
Richards, Laura A. | Kumari, Rupa | White, Debbie | Parashar, Neha | Kumar, Arun | Ghosh, Ashok | Sumant Kumar, | Chakravorty, Biswajit | Lu, Chuanhe | Civil, Wayne | Lapworth, Dan J. | Krause, Stephan | Polya, David A. | Gooddy, Daren C.
Aquatic pollution from emerging organic contaminants (EOCs) is of key environmental importance in India and globally, particularly due to concerns of antimicrobial resistance, ecotoxicity and drinking water supply vulnerability. Here, using a broad screening approach, we characterize the composition and distribution of EOCs in groundwater in the Gangetic Plain around Patna (Bihar), as an exemplar of a rapidly developing urban area in northern India. A total of 73 EOCs were detected in 51 samples, typically at ng.L⁻¹ to low μg.L⁻¹ concentrations, relating to medical and veterinary, agrochemical, industrial and lifestyle usage. Concentrations were often dominated by the lifestyle chemical and artificial sweetener sucralose. Seventeen identified EOCs are flagged as priority compounds by the European Commission, World Health Organisation and/or World Organisation for Animal Health: namely, herbicides diuron and atrazine; insecticides imidacloprid, thiamethoxam, clothianidin and acetamiprid; the surfactant perfluorooctane sulfonate (and related perfluorobutane sulfonate, perfluorohexane sulfonate, perfluorooctanoic acid and perfluoropentane sulfonate); and medical/veterinary compounds sulfamethoxazole, sulfanilamide, dapson, sulfathiazole, sulfamethazine and diclofenac. The spatial distribution of EOCs varies widely, with concentrations declining with depth, consistent with a strong dominant vertical flow control. Groundwater EOC concentrations in Patna were found to peak within ∼10 km distance from the River Ganges, indicating mainly urban inputs with some local pollution hotspots. A heterogeneous relationship between EOCs and population density likely reflects confounding factors including varying input types and controls (e.g. spatial, temporal), wastewater treatment infrastructure and groundwater abstraction. Strong seasonal agreement in EOC concentrations was observed. Co-existence of limited transformation products with associated parent compounds indicate active microbial degradation processes. This study characterizes key controls on the distribution of groundwater EOCs across the urban to rural transition near Patna, as a rapidly developing Indian city, and contributes to the wider understanding of the vulnerability of shallow groundwater to surface-derived contamination in similar environments.
Показать больше [+] Меньше [-]Cascading effects of insecticides and road salt on wetland communities
2021
Lewis, Jacquelyn L. | Agostini, Gabriela | Jones, Devin K. | Relyea, Rick A.
Novel stressors introduced by human activities increasingly threaten freshwater ecosystems. The annual application of more than 2.3 billion kg of pesticide active ingredient and 22 billion kg of road salt has led to the contamination of temperate waterways. While pesticides and road salt are known to cause direct and indirect effects in aquatic communities, their possible interactive effects remain widely unknown. Using outdoor mesocosms, we created wetland communities consisting of zooplankton, phytoplankton, periphyton, and leopard frog (Rana pipiens) tadpoles. We evaluated the toxic effects of six broad-spectrum insecticides from three families (neonicotinoids: thiamethoxam, imidacloprid; organophosphates: chlorpyrifos, malathion; pyrethroids: cypermethrin, permethrin), as well as the potentially interactive effects of four of these insecticides with three concentrations of road salt (NaCl; 44, 160, 1600 Cl⁻ mg/L). Organophosphate exposure decreased zooplankton abundance, elevated phytoplankton biomass, and reduced tadpole mass whereas exposure to neonicotinoids and pyrethroids decreased zooplankton abundance but had no significant effect on phytoplankton abundance or tadpole mass. While organophosphates decreased zooplankton abundance at all salt concentrations, effects on phytoplankton abundance and tadpole mass were dependent upon salt concentration. In contrast, while pyrethroids had no effects in the absence of salt, they decreased zooplankton and phytoplankton density under increased salt concentrations. Our results highlight the importance of multiple-stressor research under natural conditions. As human activities continue to imperil freshwater systems, it is vital to move beyond single-stressor experiments that exclude potentially interactive effects of chemical contaminants.
Показать больше [+] Меньше [-]Comparison of greenhouse and open field cultivations across China: Soil characteristics, contamination and microbial diversity
2018
Sun, Jianteng | Pan, Lili | Li, Zhiheng | Zeng, Qingtao | Wang, Lingwen | Zhu, Lizhong
A national scale survey was conducted to determine an array of inorganic and organic contaminants in agricultural soils from two cultivation modes (greenhouse vs. open field) in 20 provinces across China. The investigated contaminants include organochlorine pesticides (OCPs), phthalate esters (PAEs), polycyclic aromatic hydrocarbons (PAHs), lead (Pb), zinc (Zn), copper (Cu) and cadmium (Cd). The large amounts of agrochemicals used and special cultivation mode in greenhouse caused substantial soil pollution and deterioration of soil quality. Mean concentrations of both OCPs and PAEs in greenhouse soil were approximately 100% higher than those in open field. The pH values were 6.85 ± 1.04 and 7.34 ± 0.84 for greenhouse and open field, respectively (p > 0.05). The soil microbial community was predicted to be affected by pollution in greenhouse through the PICRUSt analysis of 16s rRNA sequences. The 12 variables including various chemicals and soil properties together explained 15% of the observed variation in the community composition. In the studied variables, PAEs and lead were the primary factors affecting microbial diversity in greenhouse soils, while pH had the greatest impact on the microbial community in open field soils. These findings enhanced our understanding of the environmental impact and contamination management of greenhouses worldwide.
Показать больше [+] Меньше [-]The effects of organophosphorus insecticides and heavy metals on DNA damage and programmed cell death in two plant models
2018
Cortés-Eslava, Josefina | Gómez-Arroyo, Sandra | Risueño, Maria C. | Testillano, Pilar S.
The ubiquity of pollutants, such as agrochemicals and heavy metals, constitute a serious risk to human health. To evaluate the induction of DNA damage and programmed cell death (PCD), root cells of Allium cepa and Vicia faba were treated with two organophosphate insecticides (OI), fenthion and malathion, and with two heavy metal (HM) salts, nickel nitrate and potassium dichromate. An alkaline variant of the comet assay was performed to identify DNA breaks; the results showed comets in a dose-dependent manner, while higher concentrations induced clouds following exposure to OIs and HMs. Similarly, treatments with higher concentrations of OIs and HMs were analyzed by immunocytochemistry, and several structural characteristics of PCD were observed, including chromatin condensation, cytoplasmic vacuolization, nuclear shrinkage, condensation of the protoplast away from the cell wall, and nuclei fragmentation with apoptotic-like corpse formation. Abiotic stress also caused other features associated with PCD, such as an increase of active caspase-3-like protein, changes in the location of cytochrome C (Cyt C) toward the cytoplasm, and decreases in extracellular signal-regulated protein kinase (ERK) expression. Genotoxicity results setting out an oxidative via of DNA damage and evidence the role of the high affinity of HM and OI by DNA molecule as underlying cause of genotoxic effect. The PCD features observed in root cells of A. cepa and V. faba suggest that PCD takes place through a process that involves ERK inactivation, culminating in Cyt C release and caspase-3-like activation. The sensitivity of both plant models to abiotic stress was clearly demonstrated, validating their role as good biosensors of DNA breakage and PCD induced by environmental stressors.
Показать больше [+] Меньше [-]Current status and temporal trend of heavy metals in farmland soil of the Yangtze River Delta Region: Field survey and meta-analysis
2016
Shao, Diwei | Zhan, Yu | Zhou, Wenjun | Zhu, Lizhong
While the spatial distributions of heavy metals in farmland soil of China have been comprehensively delineated, their temporal trends are rarely investigated but are important for environmental risk management. In this study, the current status and temporal trends of heavy metals in the farmland soil of Yangtze River Delta (YRD) were evaluated through field survey and meta-analysis. The field survey conducted in 2014 showed that the concentrations of Cd, Pb, Cu, Zn, and Ni in the farmland topsoil were 0.23 ± 0.14, 37.63 ± 15.60, 25.83 ± 41.62, 88.38 ± 43.30, and 29.21 ± 12.41 mg kg−1 (mean ± standard deviation), respectively. The heavy metals showed relatively higher concentrations on the borders among Zhejiang, Jiangsu, and Shanghai. In the meta-analysis, we selected 68 published studies related to heavy metal pollution in farmland topsoil of YRD from 2000 to the year (2014) when the field survey was conducted. The results show an increasing trend for Cd (p < 0.05; 0.0081 mg kg−1 year−1), a decreasing trend for Cu (p < 0.05; -0.80 mg kg−1 year−1), and no significant trend for Pb (p = 0.155), Zn (p = 0.746), and Ni (p = 0.305). The increasing rate of Cd from the meta-analysis is consistent with the rate (0.0013 mg kg−1 year−1) derived from the mass balance calculation for Cd, where atmospheric deposition originated from intensive coal combustion is considered as the main source of Cd in the topsoil. The decreasing trend of Cu is likely due to largely reduced application of copper-based agrochemicals. Environmental regulation and soil remediation are needed to protect food safety and ecosystem from heavy metal pollution, especially Cd.
Показать больше [+] Меньше [-]Screening agrochemicals as potential protectants of plants against ozone phytotoxicity
2015
Saitanis, Costas J. | Lekkas, Dimitrios V. | Agathokleous, Evgenios | Flouri, Fotini
We tested seven contemporary agrochemicals as potential plant protectants against ozone phytotoxicity. In nine experiments, Bel-W3 tobacco plants were experienced weekly exposures to a) 80 nmol mol−1 of ozone-enriched or ozone-free air in controlled environment chambers, b) an urban air polluted area, and c) an agricultural-remote area. Ozone caused severe leaf injury, reduced chlorophylls' and total carotenoids' content, and negatively affected photosynthesis and stomatal conductance. Penconazole, (35% ± 8) hexaconazole (28% ± 5) and kresoxim-methyl (28% ± 15) showed higher plants’ protection (expressed as percentage; mean ± s.e.) against ozone, although the latter exhibited a high variability. Azoxystrobin (21% ± 15) showed lower protection efficacy and Benomyl (15% ± 9) even lower. Trifloxystrobin (7% ± 11) did not protect the plants at all. Acibenzolar-S-methyl + metalaxyl-M (Bion MX) (−6% ± 17) exhibited the higher variability and contrasting results: in some experiments it showed some protection while in others it intensified the ozone injury by causing phytotoxic symptoms on leaves, even in control plants.
Показать больше [+] Меньше [-]