Уточнить поиск
Результаты 1-10 из 57
Cu phytoextraction and biomass utilization as essential trace element feed supplements for livestock Полный текст
2022
Wang, Xiaolin | Fernandes de Souza, Marcella | Mench, Michel J. | Li, Haichao | Ok, Yong Sik | Tack, Filip M.G. | Meers, Erik
Cu phytoextraction and biomass utilization as essential trace element feed supplements for livestock Полный текст
2022
Wang, Xiaolin | Fernandes de Souza, Marcella | Mench, Michel J. | Li, Haichao | Ok, Yong Sik | Tack, Filip M.G. | Meers, Erik
Copper (Cu), as an essential element, is added to animal feed to stimulate growth and prevent disease. The forage crop alfalfa (Medicago sativa L.) produced during Cu phytoextraction may be considered a biofortified crop to substitute the Cu feed additives for livestock production, beneficially alleviating Cu contamination in soils and reducing its input into agriculture systems. To assess this, alfalfa was grown in three similar soils with different Cu levels, i.e., 11, 439 and 779 mg kg⁻¹ for uncontaminated soil (A), moderately Cu-contaminated soil (B) and highly Cu-contaminated soil (C), respectively. EDDS (Ethylenediamine-N,N′-disuccinic acid) was applied to the soils seven days before the first cutting at four rates (0, 0.5, 2 and 5 mmol kg⁻¹) to enhance bioavailable Cu uptake. Alfalfa grew well in soils A and B but not in the highly Cu-contaminated soil. After applying EDDS, a significant biomass reduction of the first cutting shoot was only observed with 5 mmol kg⁻¹ EDDS in the highly Cu-contaminated soil, with a 45% (P < 0.05) decrease when compared to the control. Alfalfa grown in the three soils gradually wilted after the first cutting with 5 mmol kg⁻¹ EDDS, and Cu concentrations in the first cutting shoot were augmented strongly, by 250% (P < 0.05), 3500% (P < 0.05) and 6700% (P < 0.05) compared to the controls, respectively. Cu concentrations in alfalfa shoots were found to be higher in this study than in some fodder plants and further augmented in soils with higher Cu levels and with EDDS application. These findings suggest that alfalfa grown on clean soils or soils with up to 450 mg Cu kg⁻¹ (with appropriate EDDS dosages) has the potential to be considered as a partial Cu supplementation for livestock. This research laid the foundation for the integration between Cu-phytoextraction and Cu-biofortification for livestock.
Показать больше [+] Меньше [-]Cu phytoextraction and biomass utilization as essential trace element feed supplements for livestock Полный текст
2022
Wang, Xiaolin | Fernandes de Souza, Marcella | Mench, Michel, J | Li, Haichao | Ok, Yong Sik | Tack, Filip M.G. | Meers, Erik | Universiteit Gent = Ghent University = Université de Gand (UGENT) | Biodiversité, Gènes & Communautés (BioGeCo) ; Université de Bordeaux (UB)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Korea Polytechnic University (KPU)
International audience | Copper (Cu), as an essential element, is added to animal feed to stimulate growth and prevent disease. The forage crop alfalfa (Medicago sativa L.) produced during Cu phytoextraction may be considered a biofortified crop to substitute the Cu feed additives for livestock production, beneficially alleviating Cu contamination in soils and reducing its input into agriculture systems. To assess this, alfalfa was grown in three similar soils with different Cu levels, i.e., 11, 439 and 779 mg kg−1 for uncontaminated soil (A), moderately Cu-contaminated soil (B) and highly Cu-contaminated soil (C), respectively. EDDS (Ethylenediamine-N,N′-disuccinic acid) was applied to the soils seven days before the first cutting at four rates (0, 0.5, 2 and 5 mmol kg−1) to enhance bioavailable Cu uptake. Alfalfa grew well in soils A and B but not in the highly Cu-contaminated soil. After applying EDDS, a significant biomass reduction of the first cutting shoot was only observed with 5 mmol kg−1 EDDS in the highly Cu-contaminated soil, with a 45% (P < 0.05) decrease when compared to the control. Alfalfa grown in the three soils gradually wilted after the first cutting with 5 mmol kg−1 EDDS, and Cu concentrations in the first cutting shoot were augmented strongly, by 250% (P < 0.05), 3500% (P < 0.05) and 6700% (P < 0.05) compared to the controls, respectively. Cu concentrations in alfalfa shoots were found to be higher in this study than in some fodder plants and further augmented in soils with higher Cu levels and with EDDS application. These findings suggest that alfalfa grown on clean soils or soils with up to 450 mg Cu kg−1 (with appropriate EDDS dosages) has the potential to be considered as a partial Cu supplementation for livestock. This research laid the foundation for the integration between Cu-phytoextraction and Cu-biofortification for livestock.
Показать больше [+] Меньше [-]Proof of the environmental circulation of veterinary drug albendazole in real farm conditions Полный текст
2021
Navratilova, Martina | Raisová Stuchlíková, Lucie | Matoušková, Petra | Ambrož, Martin | Lamka, Jiří | Vokřál, Ivan | Szotáková, Barbora | Skálová, Lenka
Anthelmintics, drugs against parasitic worms, are frequently used in livestock and might act as danger environmental microcontaminants. The present study was designed to monitor the possible circulation of common anthelmintic drug albendazole (ABZ) and its metabolites in the real agriculture conditions. The sheep were treated with the recommended dose of ABZ. Collected faeces were used for the fertilization of a field with fodder plants (alfalfa and clover) which served as feed for sheep from a different farm. The selective ultrasensitive mass spectrometry revealed surprisingly high concentrations of active ABZ metabolite (ABZ-sulphoxide) in all samples (dung, plants, ovine plasma, rumen content and faeces). Our results prove for the first time an undesirable permeation of ABZ metabolites from sheep excrement into plants (used as fodder) and subsequently to other sheep in real agricultural conditions. This circulation causes the permanent exposition of the ecosystems and food-chain to the drug and can promote the development of drug resistance in helminths.
Показать больше [+] Меньше [-]Mercury vertical and horizontal concentrations in agricultural soils of a historically contaminated site: Role of soil properties, chemical loading, and cultivated plant species in driving its mobility Полный текст
2021
Morosini, Cristiana | Terzaghi, Elisa | Raspa, Giuseppe | Zanardini, Elisabetta | Anelli, Simone | Armiraglio, Stefano | Petranich, Elisa | Covelli, Stefano | Di Guardo, Antonio
The long term vertical and horizontal mobility of mercury (Hg) in soils of agricultural areas of a historically contaminated Italian National Relevance Site (SIN Brescia-Caffaro) was investigated. The contamination resulted from the continuous discharge of Hg in irrigation waters by an industrial plant (Caffaro S.p.A), equipped with a mercury-cell chlor-alkali process. The contamination levels with depth ranged from about 20 mg/kg dry weight (d.w.) of soil in the top (plow) layer to less than 0.1 mg/kg d.w. at 1 m depth. The concentrations varied also spatially, up to one order of magnitude within the same field and showing a decreasing trend from the Hg source (i.e., irrigation ditches). The concentration profiles and gradients measured were explained considering Hg loading, soil properties, such as the texture, organic carbon content, pH and cation exchange capacity. A Selective Sequential Extraction (SSE) was also applied on soil samples from an ad hoc greenhouse experiment to investigate the role of different plant species in influencing Hg speciation in soils. Although most of the extracted Hg was included in scarcely mobile or immobile forms, some plant species (i.e., alfalfa) showed to importantly increase the soluble and exchangeable fractions with respect to the unplanted control soils, thus affecting mobility and potential bioavailability of Hg.
Показать больше [+] Меньше [-]Toxicity of copper hydroxide nanoparticles, bulk copper hydroxide, and ionic copper to alfalfa plants: A spectroscopic and gene expression study Полный текст
2018
Cota-Ruiz, Keni | Hernández-Viezcas, José A. | Varela-Ramírez, Armando | Valdés, Carolina | Núñez-Gastélum, José A. | Martínez-Martínez, Alejandro | Delgado-Rios, Marcos | Peralta-Videa, Jose R. | Gardea-Torresdey, Jorge L.
Bulk Cu compounds such as Cu(OH)₂ are extensively used as pesticides in agriculture. Recent investigations suggest that Cu-based nanomaterials can replace bulk materials reducing the environmental impacts of Cu. In this study, stress responses of alfalfa (Medicago sativa L.) seedlings to Cu(OH)₂ nanoparticle or compounds were evaluated. Seeds were immersed in suspension/solutions of a Cu(OH)₂ nanoform, bulk Cu(OH)₂, CuSO₄, and Cu(NO₃)₂ at 25 and 75 mg/L. Six days later, the germination, seedling growth, and the physiological and biochemical responses of sprouts were evaluated. All Cu treatments significantly reduced root elongation (average = 63%). The ionic compounds at 25 and 75 mg/L caused a reduction in all elements analyzed (Ca, K, Mg, P, Zn, and Mn), excepting for S, Fe and Mo. The bulk-Cu(OH)₂ treatment reduced K (48%) and P (52%) at 75 mg/L, but increased Zn at 25 (18%) and 75 (21%) mg/L. The nano-Cu(OH)₂ reduced K (46%) and P (48%) at 75 mg/L, and also P (37%) at 25 mg/L, compared with control. Confocal microscopy images showed that all Cu compounds, at 75 mg/L, significantly reduced nitric oxide, concurring with the reduction in root growth. Nano Cu(OH)₂ at 25 mg/L upregulated the expression of the Cu/Zn superoxide dismutase gene (1.92-fold), while ionic treatments at 75 mg/L upregulated (∼10-fold) metallothionein (MT) transcripts. Results demonstrated that nano and bulk Cu(OH)₂ compounds caused less physiological impairments in comparison to the ionic ones in alfalfa seedlings.
Показать больше [+] Меньше [-]Assessing the impact of Cross Compliance measures on nitrogen fluxes from European farmlands with DNDC-EUROPE Полный текст
2011
Follador, Marco | Leip, Adrian | Orlandini, Lorenzo
We investigated the effects of the agricultural Cross Compliance measures for European cultivated lands, focusing on nitrogen (N) fluxes from corn fields. Four scenarios have been designed according to some conservation farming practices, namely no-till, max manure, catch crop and N splitting. Results indicated that (1) in the no-till scenario the N₂O fluxes are decreased during the first simulated years, with a return to default fluxes in following years; no-till particularly decreased N₂O emission in the dryer and colder simulation spatial units (HSMUs); (2) the no-till and the N splitting scenarios slightly increased the N surplus because of a decrease in plant uptake; (3) introducing a rotation with alfalfa decreased the N leaching in the corn crops following the catch crops; and (4) the application of fertilizer and manure during the cold and wet seasons led to an increase of N leaching.
Показать больше [+] Меньше [-]Screening of Cd tolerant genotypes and isolation of metallothionein genes in alfalfa (Medicago sativa L.) Полный текст
2011
Wang, Xiaojuan | Song, Yu | Ma, Yanhua | Zhuo, Renying | Jin, Liang
In order to evaluate Cd tolerance in wide-ranging sources of alfalfa (Medicago sativa) and to identify Cd tolerant genotypes which may potentially be useful for restoring Cd-contaminated environments, thirty-six accessions of alfalfa were screened under hydroponic culture. Our results showed that the relative root growth rate varied from 0.48 to 1.0, which indicated that different alfalfa accessions had various responses to Cd stress. The candidate fragments derived from differentially expressed metallothionein (MT) genes were cloned from leaves of two Cd tolerant genotypes, YE and LZ. DNA sequence and the deduced protein sequence showed that MsMT2a and MsMT2b had high similarity to those in leguminous plants. DDRT-PCR analysis showed that MsMT2a expressed in both YE and LZ plants under control and Cd stress treatment, but MsMT2b only expressed under Cd stress treatment. This suggested that MsMT2a was universally expressed in leaves of alfalfa but expression of MsMT2b was Cadmium (Cd) inducible.
Показать больше [+] Меньше [-]Effects of short-term soil exposure of different doses of ZnO nanoparticles on the soil environment and the growth and nitrogen fixation of alfalfa Полный текст
2022
Sun, Hongda | Peng, Qingqing | Guo, Jiao | Zhang, Haoyue | Bai, Junrui | Mao, Hui
The extensive application of nanomaterials has increased their levels in soil environments. Therefore, clarifying the process of environmental migration is important for environmental safety and human health. In this study, alfalfa was used to determine the effects of different doses of ZnO nanoparticles (NPs) on the growth of alfalfa and the soil environment. Results showed that the alfalfa biomass was inversely proportional to the exposure concentration of ZnO NPs. The Zn concentration in the alfalfa tissue and the exposure dose presented a significant positive correlation. A high concentration of ZnO NPs decreased the nitrogen-fixing area of root nodules while the number of bacteroids and root nodules, which in turn affected the nitrogen-fixing ability of alfalfa. At the same time, it caused different degrees of damage to the root nodules and root tip cells of alfalfa. A high dose of ZnO NPs decreased the relative abundance and diversity of the soil microorganisms. Therefore, short-term and high-dose exposure of ZnO NPs causes multiple toxicities in plants and soil environments.
Показать больше [+] Меньше [-]Modeling the fate and human health impacts of pharmaceuticals and personal care products in reclaimed wastewater irrigation for agriculture Полный текст
2021
Shahriar, Abrar | Tan, Junwei | Sharma, Priyamvada | Hanigan, David | Verburg, Paul | Pagilla, Krishna | Yang, Yu
Wastewater reclamation and reuse for agriculture have attracted a great deal of interest, due to water stress caused by rapid increase in human population and agricultural water demand as well as climate change. However, the application of treated wastewater for irrigation can lead to the accumulation of pharmaceuticals and personal care products (PPCPs) in the agricultural crops, grazing animals, and consequently to human dietary exposure. In this study, a model was developed to simulate the fate of five PPCPs; triclosan (TCS), carbamazepine (CBZ), naproxen (NPX), gemfibrozil (GFB), and fluoxetine (FXT) during wastewater reuse for agriculture, and potential human dietary exposure and health risk. In a reclaimed wastewater-irrigated grazing farm growing alfalfa, it took 100–535 days for PPCPs to achieve the steady-state concentrations of 1.43 × 10⁻⁶, 4.73 × 10⁻⁵, 1.17 × 10⁻⁶, 1.53 × 10⁻⁵, and 7.38 × 10⁻⁶ mg/kg for TCS, CBZ, NPX, GFB, and FXT in soils, respectively. The accumulated concentration of PPCPs in the plant (alfalfa) and grazing animals (beef) ranged 2.86 × 10⁻⁷− 4.02 × 10⁻³ and 4.39 × 10⁻¹⁵− 6.27 × 10⁻⁷ mg/kg, respectively. Human dietary exposure to these compounds through beef consumption was calculated to be 1.67 × 10⁻¹⁸− 1.74 × 10⁻¹⁰ mg/kg bodyweight/d, much lower than the acceptable daily intake (ADI). Similar results were obtained for a ‘typical’ reclaimed wastewater irrigated farm based on the typical setup using our model. Screening analysis showed that PPCPs with relatively high LogD value and lower ratios of degradation rate (in soils) to plant uptake have a greater potential to be transferred to humans and cause potential health risks. We established a modeling method for evaluating the fate and human health effects of PPCPs in reclaimed wastewater reuse for the agricultural system and developed an index for screening PPCPs with high potential to accumulate in agricultural products. The model and findings are valuable for managing water reuse for irrigation and mitigating the harmful effects of PPCPs.
Показать больше [+] Меньше [-]Effect of soil amendments on molybdenum availability in mine affected agricultural soils Полный текст
2021
Wang, Xiaoqing | Brunetti, Gianluca | Tian, Wenjie | Owens, Gary | Qu, Yang | Jin, Chaoxi | Lombi, Enzo
Molybdenum (Mo) contamination of agricultural soils around Mo-mining areas is of emerging environmental concern. This study evaluated potential practical techniques for chemical immobilization of three Mo contaminated agricultural soils via application of up to six amendments from four different types of materials including biosolids, biochar supported nanoscale zero-valent iron (BC-nZVI), drinking water treatment residues (WTR) and ferrous minerals (magnetite and ferrihydrite). The efficacy of the different amendments on soil Mo bioaccessibility and bioavailability was evaluated by monitoring Mo uptake in both monocotyledon (ryegrass) and dicotyledon (alfalfa) plants, soil extractable Mo, and Mo bioavailability as measured by Diffusive Gradient in Thin Films (DGT®). All amendments exhibited no immobilization effect and increased Mo extractability in the severely contaminated soil (264 mg Mo kg⁻¹). In contrast, in lightly and moderately contaminated soils (22 and 98 mg Mo kg⁻¹), biosolids, WTR and magnetite all reduced soil extractable Mo and decreased Mo uptake in both alfalfa and ryegrass shoots relative to controls (CK). Moreover, DGT showed that during incubation experiments while biosolids amendments increased Mo bioavailability from 115 to 378% compared to the CK treatments, all other amendments decreased Mo bioavailability insignificantly.
Показать больше [+] Меньше [-]A new experimental setup for measuring greenhouse gas and volatile organic compound emissions of silage during the aerobic storage period in a special silage respiration chamber Полный текст
2020
Krommweh, Manuel S. | Schmithausen, Alexander J. | Deeken, Hauke F. | Büscher, Wolfgang | Maack, Gerd-Christian
The aim of this study was to develop a new experimental setup to determine parallel the emissions of greenhouse gases (GHG) and volatile organic compounds (VOCs) from silage during the opening as well as the subsequent aerobic storage phase of the complete bale without wrapping film. For this purpose, a special silage respiration chamber was used in which a silage bale could be examined. The gas analysis (CO₂, methanol, ethanol, ethyl acetate) of inlet, ambient and outlet air of the silage respiration chamber was carried out by photoacoustic spectroscopy. The gas samples taken inside the bale were analysed by gas chromatography for CO₂, O₂, CH₄, and N₂O. Three silage bales (grass and lucerne) as the smallest silage unit commonly used in practice were examined. The emission behaviour of the bales was recorded during experimental periods up to 55 days. The results allow a differentiation of the outgassing processes. On the one hand, gases produced during the anaerobic ensiling process (CO₂, CH₄, N₂O) are released once in a large amount during the first experimental hours after opening the silage. On the other hand, a continuous outgassing process takes place, which is particularly true for the VOCs ethanol, methanol, and ethyl acetate, whereby VOC emissions increase with rising ambient air temperatures. In this study, the emissions during the first 600 experimental hours from the grass silage bale and lucerne silage bale were 2313 g and 2612 g CO₂, 17.6 g and 145.2 g methanol, 132.3 g and 675.9 g ethanol, 55.1 g and 66.2 g ethyl acetate, respectively. Nevertheless, the focus of this study was on the technical recording of gas concentrations inside the silage bale itself and the emissions in the ambient air of the bale. For a better interpretation of the data, additional factors should be considered in further investigations.
Показать больше [+] Меньше [-]