Уточнить поиск
Результаты 1-10 из 43
Preparation of biochar-interpenetrated iron-alginate hydrogel as a pH-independent sorbent for removal of Cr(VI) and Pb(II)
2021
Zhao, Chenhao | Hu, Linlin | Zhang, Changai | Wang, Shengsen | Wang, Xiaozhi | Huo, Zhongyang
Herein, a pH-independent interpenetrating polymeric networks (Fe-SA-C) were fabricated from graphitic biochar (BC) and iron-alginate hydrogel (Fe-SA) for removal of Cr(VI) and Pb(II) in aqueous solution. Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy and scanning electron microscope (SEM) results demonstrated that graphitic BC interpenetration increased surface porosity and distorted surfaces of Fe-SA, which boosted availability of hydroxyl (-OH) group. Fe³⁺ as a cross-linking agent of the alginate endowed Fe-SA-C with positive surfaces (positive zeta potential) and excellent pH buffering capacity, while excessive Fe³⁺ was soldered on Fe-SA-C matrix as FeO(OH) and Fe₂O₃. Cr(VI) removal at pH of 3 by Fe-SA-C (20.3 mg g⁻¹) were 30.3% and 410.6% greater than that by Fe-SA and BC, respectively. Fe-SA-C exhibited minor pH dependence over pH range of 2–7 towards Cr(VI) retention. Greater zeta potential of Fe-SA-C over Fe-SA conferred a better electrostatic attraction with Cr(VI). FTIR and XPS of spent sorbents confirmed the reduction accounted for 98.5% for Cr(VI) removal mainly due to participation of –OH. Cr(VI) reduction was further favored by conductive carbon matrix in Fe-SA-C, as evidenced by more negative Tafel corrosion potential. Reductively formed Cr(III) was subsequently complexed with carboxylic groups originating from oxidation of –OH. Thus, Cr(VI) removal invoked electrostatic attraction, reduction, and surface complexation mechanisms. Pb(II) removal with excellent pH independence was mainly ascribed to surface complexation and possible precipitation. Thus, the functionalized, conductive, and positively-charged Fe-SA-C extended its applicability for Cr(VI) and Pb(II) removal from aqueous solutions in a wide pH range. This research could expand the application of hydrogel materials for removal of both cationic and anionic heavy metals in solutions over an extended pH range.
Показать больше [+] Меньше [-]Influence of nanoplastic surface charge on eco-corona formation, aggregation and toxicity to freshwater zooplankton
2019
Saavedra Gorriateguy, Juan | Stoll, Serge | Slaveykova, Vera I.
Concerns about possible environmental implications of nano- and micro-plastics are continuously raising. Hence, comprehensive understanding of their behaviour, bioaccumulation and toxicity potential is required. Nevertheless, systematic studies on their fate and possible effects in freshwaters, as well as the influence of particle-specific and environmental factors on their behaviour and impacts are still missing. The aims of the present study are thus two-fold: (i) to examine the role of the surface charge on nanoplastic stability and acute effects to freshwater zooplankton; (ii) to decipher the influence of the refractory natural organic matter (NOM) on the nanoplastic fate and effects. Amidine and carboxyl-stabilized polystyrene (PS) spheres of 200 nm diameter characterized by opposite primary surface charges and neutral buoyancy were selected as model nanoplastics. The results demonstrated that the surface functionalization of the polystyrene nanoplastics controls their aggregation behaviour. Alginate or Suwannee River humic acid (SRHA) modified significantly the surface charge of positively-charged amidine PS nanoplastic and the aggregation state, while had no significant influence on the negatively-charged carboxyl PS nanoplastic. Both amidine and carboxyl PS nanoplastics were ingested by the zooplankton and concentrated mainly in the gut of water flea Daphnia magna and larvae Thamnocephalus platyurus, and the stomach of rotifer Brachionus calyciflorus. Amidine PS nanoplastic was more toxic than carboxyl one. The toxicity decreased in the order D. magna (48 h -immobilization) > B. calyciflorus (24 h - lethality) > T. platyurus (24 h - lethality). Alginate or SRHA reduced significantly the toxicity of both amidine and carboxyl PS nanoplastics to the studied zooplankton representatives. The implications of this laboratory study findings to natural environment were discussed.
Показать больше [+] Меньше [-]Removal of Cadmium (II) using water hyacinth (Eichhornia crassipes) biochar alginate beads in aqueous solutions
2020
Liu, Cenwei | Ye, Jing | Lin, Yi | Wu, Jian | Price, G.W. | Burton, D. | Wang, Yixiang
Biochar produced from water hyacinths (Eichhornia crassipes) has been demonstrated to be an effective adsorbent for the removal of certain heavy metals and as a means of control for this highly invasive species. This study involved examined the Cd²⁺ sorption dynamics of an alginate encapsulated water hyacinth biochar (BAC) generated at different temperatures and modified using ferric/ferrous sulfate (MBAC). The maximum Cd²⁺ sorption occurred at a pH of 6 and at a solution temperature of 37 °C. Sorption equilibria for the biochar-alginate capsule (BAC) and modified biochar-alginate capsule (MBAC) treatments fit both the Langmuir (R² = 0.876 to 0.99) and Freundlich (R² = 0.849 to 0.971) equations. Langmuir isotherms had a better fit than the Freundlich isotherms, with maximum sorption capacities ranging from 24.2 to 45.8 mg Cd²⁺ g⁻¹. Larger KL values in Freundlich modeling suggest strong bonding of the BAC and MBAC sorbents to Cd²⁺, with values of KL in the MBAC treatments ranging between 31 and 178% greater than the BAC treatments. Cd²⁺ sorption followed pseudo first-order kinetics (R² = 0.926 to 0.991) with greater efficiency of removal using treatments with biochar generated at temperatures >500 °C. Results from this study highlight the potential for biochar-alginate capsules derived from water hyacinth to be effective for the removal of Cd²⁺ from wastewaters.
Показать больше [+] Меньше [-]Ocean acidification affects biological activities of seaweeds: A case study of Sargassum vulgare from Ischia volcanic CO2 vents
2020
Kumar, Amit | Buia, Maria Cristina | Palumbo, Anna | Mohany, Mohamed | Wadaan, Mohammed A.M. | Hozzein, Wael N. | Beemster, Gerrit T.S. | AbdElgawad, Hamada
We utilized volcanic CO₂ vents at Castello Aragonese off Ischia Island as a natural laboratory to investigate the effect of lowered pH/elevated CO₂ on the bioactivities of extracts from fleshy brown algae Sargassum vulgare C. Agardh. We analysed the carbohydrate levels, antioxidant capacity, antibacterial, antifungal, antiprotozoal, anticancer properties and antimutagenic potential of the algae growing at the acidified site (pH ∼ 6.7) and those of algae growing at the nearby control site Lacco Ameno (pH∼8.1). The results of the present study show that the levels of polysaccharides fucoidan and alginate were higher in the algal population at acidified site. In general, extracts for the algal population from the acidified site showed a higher antioxidant capacity, antilipidperoxidation, antibacterial, antifungal, antiprotozoal, anticancer activities and antimutagenic potential compared to the control population. The increased bioactivity in acidified population could be due to elevated levels of bioactive compounds of algae and/or associated microbial communities. In this snapshot study, we performed bioactivity assays but did not characterize the chemistry and source of presumptive bioactive compounds. Nevertheless, the observed improvement in the medicinal properties of S. vulgare in the acidified oceans provides a promising basis for future marine drug discovery.
Показать больше [+] Меньше [-]Influence of macromolecules on aggregation kinetics of diesel soot nanoparticles in aquatic environments
2019
Chen, Chengyu | Wei, Jingyue | Li, Jing | Duan, Zhihui | Huang, Weilin
Soot nanoparticles (SNPs) produced from incomplete combustion have strong impacts on aquatic environments as they eventually reach surface water, where their environmental fate and transport are largely controlled by aggregation. This study investigated the aggregation kinetics of SNPs in the presence of macromolecules including fulvic acid (FA), humic acid (HA), alginate polysaccharide, and bovine serum albumin (BSA, protein) under various environmentally relevant solution conditions. Our results showed that increasing salt concentrations induced SNP aggregation by suppressing electrostatic repulsion and that CaCl2 exhibited stronger effect than NaCl in charge neutralization, which is in agreement with the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory. The aggregation rates of SNPs were variously reduced by macromolecules, and such stabilization effect was the greatest by BSA, followed by HA, alginate, and FA. Steric repulsion resulting from macromolecules adsorbed on SNP surfaces was mainly responsible for enhancing SNP stability. Such steric repulsion appeared to be affected by macromolecular structure, as BSA having a more compact globular structure on SNP surfaces imparted long-range steric repulsive forces and retarded the SNP aggregation rate by 10–100 times. In addition, alginate was shown to enhance SNP aggregation by ∼10 times at high CaCl2 concentrations due to alginate gel formation via calcium bridging. The results may bear strong significance for the fate and transport of SNPs in both natural and controlled environmental systems.
Показать больше [+] Меньше [-]Alginate affects agglomeration state and uptake of 14C-labeled few-layer graphene by freshwater snails: Implications for the environmental fate of graphene in aquatic systems
2018
Su, Yu | Huang, Ji | Lu, Fenxiao | Tong, Xin | Niu, Junfeng | Mao, Liang
Understanding of the interaction of graphene with natural polysaccharides (e.g., alginate) is crucial to elucidate its environmental fate. We investigated the impact of alginate on the agglomeration and stability of ¹⁴C-labeled few-layer graphene (FLG) in varying concentrations of monovalent (NaCl) and divalent (CaCl₂) electrolytes. Enhanced agglomeration occurred at high CaCl₂ concentrations (≥5 mM) due to the alginate gel networks formation in the presence of Ca²⁺. FLG enmeshed within extended alginate gel networks was observed under transmission electron microscope and atomic force microscope. However, background Na⁺ competition for binding sites with Ca²⁺ at the alginate surfaces shielded the gelation of alginate. FLG was readily dispersed by alginate under environmentally relevant ionic strength conditions (i.e., <200 mM Na⁺ and <5 mM Ca²⁺). In comparison with the bare FLG, the slow sedimentation of the alginate-stabilized FLG (158 μg/L) caused continuous exposure of this nanomaterial to freshwater snails, which ingested 1.9 times more FLG through filter-feeding within 72 h. Moreover, surface modification of FLG by alginate significantly increased the whole-body and intestinal levels of FLG, but reduced the internalization of FLG to the intestinal epithelial cells. These findings indicate that alginate will act as a stabilizing agent controlling the transport of FLG in aqueous systems. This study also provides the first evidence that interaction of graphene with natural polysaccharides affected the uptake of FLG in the snails, which may alter the fate of FLG in aquatic environments.
Показать больше [+] Меньше [-]Transport, retention, and long-term release behavior of polymer-coated silver nanoparticles in saturated quartz sand: The impact of natural organic matters and electrolyte
2017
Hou, Jun | Zhang, Mingzhi | Wang, Peifang | Wang, Chao | Miao, Lingzhan | Xu, Yi | You, Guoxiang | Lv, Bowen | Yang, Yangyang | Liu, Zhilin
This study investigated the transport and long-term release of stabilized silver nanoparticles (AgNPs), including polyvinylpyrrolidone-coated AgNPs (PVP–AgNPs) and bare AgNPs (Bare–AgNPs), in the presence of natural organic matters (NOMs; both humic acids (HA) and alginate (Alg)) and an electrolyte (Ca2+) in a sand-packed column. Very low breakthrough rate (C/C0) of AgNPs (below 0.04) occurred in the absence of NOM and the electrolyte. Increasing the concentration of NOM and decreasing the influent NOM solution's ionic strength (IS) reduced the retention of AgNPs. The reduced NP retention at high NOM and low IS was mainly attributed to the increased energy barrier between the AgNPs and the sand grain surface. Notably, the retention of PVP–AgNPs was enhanced at high Alg concentration and low IS, which mainly resulted from the improved hydrophobicity that could increase the interaction between the PVP-AgNPs and the collector. The total release amount of PVP–AgNPs (10.03%, 9.50%, 28.42%, 6.37%) and Bare–AgNPs (3.28%, 2.58%, 10.36%, 1.54%) were gained when exposed to four kinds of NOM solutions, including deionized water, an electrolyte solution (1 mM Ca2+), HA with an electrolyte (1 mM Ca2+), and a Alg (40 mg/L) solution with an electrolyte (1 mM Ca2+). The long-term release of retained silver nanoparticles in the quartz sand was mostly through the form of released Ag NPs. The factors that increased the mobility of AgNPs in quartz sand could improve the release of the AgNPs. The release of AgNPs had no significant change in the presence Ca2+ but were increased in the presence of HA. The Alg slightly decreased the release of AgNPs by increasing the hydrophobicity of AgNPs. The results of the study indicated that all the tested NOM and Ca2+ have prominent influence on the transport and long-term release behavior of silver nanoparticles in saturated quartz sand.
Показать больше [+] Меньше [-]Mechanistic insights into soil heavy metals desorption by biodegradable polyelectrolyte under electric field
2022
Wang, Yuchen | Li, Ang | Ren, Binqiao | Han, Zijian | Lin, Junhao | Zhang, Qiwei | Cao, Tingting | Cui, Chongwei
In this study, we firstly used alginate to enhance an electrokinetic technology to remediate soil contaminated with divalent heavy metals (Pb²⁺, Cu²⁺, Zn²⁺). The mechanisms of alginate-associated migration of metal ions in electric field were confirmed. Alginate resulted in a high electrical current during electrokinetic process, and soil conductivity also increased after remediation. Obvious changes in both electroosmotic flow and soil pH were observed. Moreover, these factors were affected by increasing alginate dosage. The highest Cu (95.82%) and Zn (97.33%) removal efficiencies were obtained by introducing 1 wt% alginate. Alginate can desorb Cu²⁺ and Zn²⁺ ions from soil by forming unstable gels, which could be dissociated through electrolysis. However, Pb²⁺ ions did not easily migrate out of the contaminated soil. The density functional theory (DFT) calculations show Pb²⁺ ions could form a more stable coordination sphere in metal complexes than Cu²⁺ and Zn²⁺ ions. The metal removal efficiency was decreased by increasing alginate dosage at a high level. More alginate could provide more carboxyl ligands for divalent metal ions to stabilize gels, which were difficult to dissociate by electrolysis. In summary, the results indicate it is potential for introducing alginate into an electrokinetic system to remediate Cu- and Zn- contaminated soil.
Показать больше [+] Меньше [-]Natural molecule coatings modify the fate of cerium dioxide nanoparticles in water and their ecotoxicity to Daphnia magna
2020
Villa, Sara | Maggioni, Daniela | Hamza, Hady | Di Nica, Valeria | Magni, Stefano | Morosetti, Bianca | Parenti, Camilla Carla | Finizio, Antonio | Binelli, Andrea | Della Torre, Camilla
The ongoing development of nanotechnology has raised concerns regarding the potential risk of nanoparticles (NPs) to the environment, particularly aquatic ecosystems. A relevant aspect that drives NP toxicity is represented by the abiotic and biotic processes occurring in natural matrices that modify NP properties, ultimately affecting their interactions with biological targets. Therefore, the objective of this study was to perform an ecotoxicological evaluation of CeO₂NPs with different surface modifications representative of NP bio-interactions with molecules naturally occurring in the water environment, to identify the role of biomolecule coatings on nanoceria toxicity to aquatic organisms. Ad hoc synthesis of CeO₂NPs with different coating agents, such as Alginate and Chitosan, was performed. The ecotoxicity of the coated CeO₂NPs was assessed on the marine bacteria Aliivibrio fischeri, through the Microtox® assay, and with the freshwater crustacean Daphnia magna. Daphnids at the age of 8 days were exposed for 48 h, and several toxicity endpoints were evaluated, from the molecular level to the entire organism. Specifically, we applied a suite of biomarkers of oxidative stress and neurotoxicity and assessed the effects on behaviour through the evaluation of swimming performance. The different coatings affected the hydrodynamic behaviour and colloidal stability of the CeO₂NPs in exposure media. In tap water, NPs coated with Chitosan derivative were more stable, while the coating with Alginate enhanced the aggregation and sedimentation rate. The coatings also significantly influenced the toxic effects of CeO₂NPs. Specifically, in D. magna the CeO₂NPs coated with Alginate triggered oxidative stress, while behavioural assays showed that CeO₂NPs coated with Chitosan induced hyperactivity. Our findings emphasize the role of environmental modification in determining the NP effects on aquatic organisms.
Показать больше [+] Меньше [-]Mitigative effects of natural and model dissolved organic matter with different functionalities on the toxicity of methylmercury in embryonic zebrafish
2019
Li, Dan | Xie, Lingtian | Carvan, Michael J. | Guo, Laodong
Dissolved organic matter (DOM) occurs ubiquitously in aquatic environments and plays an intrinsic role in altering the chemical speciation and toxicity of methylmercury (MeHg). However, interactions between MeHg and natural DOM remain poorly understood, especially at the functional group level. We report here the mitigative effects of three natural organic matter (NOM) and five model-DOM under different concentrations (0, 1, 3, 10, 30 and 100 mg-C/L) on the toxicity of MeHg in embryonic zebrafish (<4 h post-fertilization, hpf). NOM are those from the Mississippi River, Yukon River, and Suwannee River, while model-DOM include those containing thiosalicylic acid, L-glutathione, dextran, alginic acid, and humic acid. We selected a MeHg concentration (100 n-mol/L) that reduces the survival rate of embryos at 24 hpf by 18% and increases malformations at 72 and 96 hpf. In the presence of DOM, however, the malformation rates induced by MeHg can be mitigated to a different extent depending on DOM concentrations, specific functional groups, and/or specific components. Model DOM with aromatic thiols was the most effective at mitigating the effects of MeHg, followed by L-glutathione, carbohydrates, and humic acid. NOM also mitigated the toxicity of MeHg dependent on their composition and/or effective DOM components as characterized by fluorescence excitation-emission matrix techniques. Specifically, humic-like DOM components are more effective in reducing the MeHg toxicity in the embryonic zebrafish compared to protein-like components. Further studies are needed to elucidate the interactions between DOM and MeHg and the mitigative mechanisms at the molecular level.
Показать больше [+] Меньше [-]