Уточнить поиск
Результаты 1-10 из 248
The effects of removing cloudwater and lowering ambient O3 on red spruce grown at high elevations in the southern Appalachians.
1993
Thornton F.C. | McDuffie C. Jr. | Pier P.A. | Wilkinson R.C.
Acidic precipitation in western North America: trends, sources and altitude effects in New Mexico 1979-1985.
1986
Popp C.J. | Brandvold D.K. | Long A. | Warneke L.
Increase of litterfall mercury input and sequestration during decomposition with a montane elevation in Southwest China
2022
Li, Xianming | Wang, Xun | Yuan, Wei | Lu, Zhiyun | Wang, Dingyong
Litterfall mercury (Hg) input has been regarded as the dominant Hg source in montane forest floor. To depict combining effects of vegetation, climate and topography on accumulation of Hg in montane forests, we comprehensively quantified litterfall Hg deposition and decomposition in a serial of subtropical forests along an elevation gradient on both leeward and windward slopes of Mt. Ailao, Southwest China. Results showed that the average litterfall Hg deposition increased from 12.0 ± 4.2 μg m⁻² yr⁻¹ in dry-hot valley shrub at 850–1000 m, 14.9 ± 6.8 μg m⁻² yr⁻¹ in mixed conifer-broadleaf forest at 1250–2400 m, to 23.1 ± 8.3 μg m⁻² yr⁻¹ in evergreen broadleaf forest at 2500–2650 m. Additionally, the windward slope forests had a significantly higher litterfall Hg depositions at the same altitude because the larger precipitation promoted the greater litterfall biomass production. The one-year litter Hg decomposition showed that the Hg mass of litter in dry-hot valley shrub decreased by 29%, while in mixed conifer-broadleaf and evergreen broadleaf forests increased by 22–48%. The dynamics of Hg in decomposing litter was controlled by the temperature mediated litter decomposition rate and the additional adsorption of environmental Hg during decomposition. Overall, our study highlights the litterfall mediated atmospheric mercury inputs and sequestration increase with the montane elevation, thus driving a Hg enhanced accumulation in the high montane forest.
Показать больше [+] Меньше [-]Investigation of water-soluble organic constituents and their spatio-temporal heterogeneity over the Tibetan Plateau
2022
Niu, Hewen | Lu, Xixi | Zhang, Guotao | Sarangi, Chandan
Investigating the migration and transformation of carbonaceous and nitrogenous matter in the cryosphere areas is crucial for understanding global biogeochemical cycle and earth's climate system. However, water-soluble organic constituents and their transformation in multiple water bodies are barely investigated. Water-soluble organic carbon (WSOC) and organic nitrogen (WSON), and particulate black carbon (PBC) in multiple types of water bodies in eastern Tibetan Plateau (TP) cryosphere for the first time have been systematically investigated. Statistical results exhibited that from south to north and from east to west of this region, WSOC concentrations in alpine river runoff were gradually elevated. WSOC and nitrogenous matter in the alpine river runoff and precipitation in the glacier region presented distinct seasonal variations. WSON was the dominant component (63.4%) of water-soluble total nitrogen in precipitation over high-altitude southeastern TP cryosphere. Water-soluble carbonaceous matter dominated the carbon cycle in the TP cryosphere, but particulate carbonaceous matter in the alpine river runoff had a small fraction of the cryospheric carbon cycle. Analysis of optical properties illustrated that PBC had a much stronger light absorption ability (MAC-PBC: 2.28 ± 0.37 m² g⁻¹) than WSOC in the alpine river runoff (0.41 ± 0.26 m² g⁻¹). Ionic composition was dominated by SO₄²⁻, NO₃⁻, and NH₄⁺ (average: 45.13 ± 3.75%) in the snow of glaciers, implying important contribution of (fossil fuel) combustion sources over this region. The results of this study have essential implications for understanding the carbon and nitrogen cycles in high altitude cryosphere regions of the world. Future work should be performed based on more robust in-situ observations and measurements from multiple environmental medium over the cryosphere areas, to ensure ecological protection and high-quality development of the high mountain Asia.
Показать больше [+] Меньше [-]Novel brominated flame retardants (NBFRs) in soil and moss in Mt. Shergyla, southeast Tibetan Plateau: Occurrence, distribution and influencing factors
2021
Xian, Hao | Hao, Yanfen | Lv, Jingya | Wang, Chu | Zuo, Peijie | Pei, Zhiguo | Li, Yingming | Yang, Ruiqiang | Zhang, Qinghua | Jiang, Guibin
Research on the environmental fate and behavior of novel brominated flame retardants (NBFRs) remains limited, especially in the remote alpine regions. In this study, the concentrations and distributions of NBFRs were investigated in soils and mosses collected from two slopes of Shergyla in the southeast of the Tibetan Plateau (TP), to unravel the environmental behaviors of NBFRs in this background area. The total NBFR concentrations (∑₇NBFRs) ranged from 34.2 to 879 pg/g dw in soil and from 72.8 to 2505 pg/g dw in moss. ∑₇NBFRs in soil samples collected in 2019 were significantly higher than those in 2012 (p < 0.05). Decabromodiphenyl ethane (DBDPE) was the predominant NBFR, accounting for 90% of ∑₇NBFRs on average. The ratio of the concentrations in moss and soil showed significantly positive correlations with LogKOA except for DBDPE (p < 0.05), indicating that the role of mosses as accumulators compared to soils are more pronounced for more volatile NBFRs. In addition, the concentrations of NBFRs generally decreased with increasing altitude on the south-facing slope, whereas on the north-facing slope some NBFRs exhibited different trends, suggesting concurrent local and long-range transport sources. Normalization based on total organic carbon/lipid concentrations strengthened the correlation with altitude, implying that the altitude gradient of the mountain slope and forest cover could jointly affect the distribution of NBFRs in the TP. Furthermore, principal components analysis (PCA) with multiple linear regression analysis (MLRA) showed that the average contribution of the mountain cold trapping effect (MCTE) accounted for the major (77%) contribution and forest filter effect (FFE) has only a modest contribution to the deposition of NBFRs in soil.
Показать больше [+] Меньше [-]Nanoplastics transport to the remote, high-altitude Alps
2021
Materić, Dušan | Ludewig, Elke | Brunner, Dominik | Rockmann, Thomas | Holzinger, Rupert
Plastic materials are increasingly produced worldwide with a total estimated production of >8300 million tonnes to date, of which 60% was discarded. In the environment, plastics fragment into smaller particles, e.g. microplastics (size < 5 mm), and further weathering leads to the formation of functionally different contaminants – nanoplastics (size <1 μm). Nanoplastics are believed to have entirely different physical (e.g. transport), chemical (e.g. functional groups at the surface) and biological (passing the cell membrane, toxicity) properties compared to the micro- and macroplastics, yet, their measurement in the environmental samples is seldom available. Here, we present measurements of nanoplastics mass concentration and calculated the deposition at the pristine high-altitude Alpine Sonnblick observatory (3106 MASL), during the 1.5 month campaigh in late winter 2017. The average nanoplastics concentration was 46.5 ng/mL of melted surface snow. The main polymer types of nanoplastics observed for this site were polypropylene (PP) and polyethylene terephthalate (PET). We measured significantly higher concentrations in the dry sampling periods for PET (p < 0.002) but not for PP, which indicates that dry deposition may be the preferential pathway for PET leading to a gradual accumulation on the snow surfaces during dry periods. Air transport modelling indicates regional and long-range transport of nanoplastics, originating preferentially from European urban areas. The mean deposition rate was 42 (+32/-25) kg km⁻² year⁻¹. Thus more than 2 × 10¹¹ nanoplastics particles are deposited per square meter of surface snow each week of the observed period, even at this remote location, which raises significant toxicological concerns.
Показать больше [+] Меньше [-]Deep winter intrusions of urban black carbon into a canyon near Santiago, Chile: A pathway towards Andean glaciers
2021
Huneeus, Nicolás | Lapere, Rémy | Mazzeo, Andrea | Ordóñez Morales, César Eduardo | Donoso, Nicolás | Munoz, Ricardo | Rutllant, José A.
Black carbon transport from the Santiago Metropolitan Area, Chile, up to the adjacent Andes Cordillera and its glaciers is of major concern. Its deposition accelerates the melting of the snowpack, which could lead to stress on water supply in addition to climate feedback. A proposed pathway for this transport is the channelling through the network of canyons that connect the urban basin to the elevated summits, as suggested by modelling studies, although no observations have validated this hypothesis so far. In this work, atmospheric measurements from a dedicated field campaign conducted in winter 2015, under severe urban pollution conditions, in Santiago and the Maipo canyon, southeast of Santiago, are analysed. Wind (speed and direction) and particulate matter concentrations measured at the surface and along vertical profiles, demonstrate intrusions of thick layers (up to 600 m above ground) of urban black carbon deep into the canyon on several occasions. Transport of PM down-valley occurs mostly through shallow layers at the surface except in connection with deep valley intrusions, when a secondary layer in altitude with return flow (down-valley) at night is observed. The transported particulate matter is mostly from the vicinity of the entrance to the canyon and uncorrelated to concentrations observed in downtown Santiago. Reanalyses data show that for 10% of the wintertime days, deep intrusions into the Maipo canyon are prevented by easterly winds advecting air pollutants away from the Andes. Also, in 23% of the cases, intrusions proceed towards a secondary north-eastward branch of the Maipo canyon, leaving 67% of the cases with favourable conditions for deep penetrations into the main Maipo canyon. Reanalyses show that the wind directions associated to the 33% anomalous cases are related to thick cloud cover and/or the development of coastal lows.
Показать больше [+] Меньше [-]Vertical distribution of smoke aerosols over upper Indo-Gangetic Plain
2020
Attenuated backscatter profiles retrieved by the space borne active lidar CALIOP on-board CALIPSO satellite were used to measure the vertical distribution of smoke aerosols and to compare it against the ECMWF planetary boundary layer height (PBLH) over the smoke dominated region of Indo-Gangetic Plain (IGP), South Asia. Initially, the relative abundance of smoke aerosols was investigated considering multiple satellite retrieved aerosol optical properties. Only the upper IGP was selectively considered for CALIPSO retrieval based on prevalence of smoke aerosols. Smoke extinction was found to contribute 2–50% of the total aerosol extinction, with strong seasonal and altitudinal attributes. During winter (DJF), smoke aerosols contribute almost 50% of total aerosol extinction only near to the surface while in post-monsoon (ON) and monsoon (JJAS), relative contribution of smoke aerosols to total extinction was highest at about 8 km height. There was strong diurnal variation in smoke extinction, evident throughout the year, with frequent abundance of smoke particles at lower height (<4 km) during daytime compared to higher height during night (>4 km). Smoke injection height also varied considerably during rice (ON: 0.71 ± 0.65 km) and wheat (AM: 2.34 ± 1.34 km) residue burning period having a significant positive correlation with prevailing PBLH. Partitioning smoke AOD against PBLH into the free troposphere (FT) and boundary layer (BL) yield interesting results. BL contribute 36% (16%) of smoke AOD during daytime (nighttime) and the BL-FT distinction increased particularly at night. There was evidence that despite travelling efficiently to FT, major proportion of smoke AOD (50–80%) continue to remain close to the surface (<3 km) thereby, may have greater implications on regional climate, air quality, smoke transport and AOD-particulate modelling.
Показать больше [+] Меньше [-]Long-term (2003–2018) trends in aerosol chemical components at a high-altitude background station in the western North Pacific: Impact of long-range transport from continental Asia
2020
Singh, Atinderpal | Chou, Charles C.-K. | Chang, Shih-Yu | Chang, Shuenn-Chin | Lin, Neng-Huei | Chuang, Ming-Tung | Pani, Shantanu Kumar | Chi, Kai Hsien | Huang, Chiu-Hua | Lee, Chung-Te
This study examined the long-term trends in chemical components in PM₂.₅ (particulate matter with aerodynamic diameter ≤2.5 μm) samples collected at Lulin Atmospheric Background Station (LABS) located on the summit of Mt. Lulin (2862 m above mean sea level) in Taiwan in the western North Pacific during 2003–2018. High ambient concentrations of PM₂.₅ and its chemical components were observed during March and April every year. This enhancement was primarily associated with the long-range transport of biomass burning (BB) smoke emissions from Indochina, as revealed from cluster analysis of backward air mass trajectories. The decreasing trends in ambient concentrations of organic carbon (−0.67% yr⁻¹; p = 0.01), elemental carbon (−0.48% yr⁻¹; p = 0.18), and non–sea-salt (nss) K⁺ (−0.71% yr⁻¹; p = 0.04) during 2003–2018 indicated a declining effect of transported BB aerosol over the western North Pacific. These findings were supported by the decreasing trend in levoglucosan (−0.26% yr⁻¹; p = 0.20) during the period affected by the long-range transport of BB aerosol. However, NO₃⁻ displayed an increasing trend (0.71% yr⁻¹; p = 0.003) with considerable enhancement resulting from the air masses transported from the Asian continent. Given that the decreasing trends were for the majority of the chemical components, the columnar aerosol optical depth (AOD) also demonstrated a decreasing trend (−1.04% yr⁻¹; p = 0.0001) during 2006–2018. Overall decreasing trends in ambient (carbonaceous aerosol and nss-K⁺) as well as columnar (e.g., AOD) aerosol loadings at the LABS may influence the regional climate, which warrants further investigations. This study provides an improved understanding of the long-term trends in PM₂.₅ chemical components over the western North Pacific, and the results would be highly useful in model simulations for evaluating the effects of BB transport on an area.
Показать больше [+] Меньше [-]Compilation and spatio-temporal analysis of publicly available total solar and UV irradiance data in the contiguous United States
2019
Zhou, Ying | Meng, Xia | Belle, Jessica Hartmann | Zhang, Huanxin | Kennedy, Caitlin | Al-Hamdan, Mohammad Z. | Wang, Jun | Liu, Yang
Skin cancer is the most common type of cancer in the United States, the majority of which is caused by overexposure to ultraviolet (UV) irradiance, which is one component of sunlight. National Environmental Public Health Tracking Program at CDC has collaborated with partners to develop and disseminate county-level daily UV irradiance (2005–2015) and total solar irradiance (1991–2012) data for the contiguous United States. UV irradiance dataset was derived from the Ozone Monitoring Instrument (OMI), and solar irradiance was extracted from National Solar Radiation Data Base (NSRDB) and SolarAnywhere data. Firstly, we produced daily population-weighted UV and solar irradiance datasets at the county level. Then the spatial distributions and long-term trends of UV irradiance, solar irradiance and the ratio of UV irradiance to solar irradiance were analyzed. The national average values across all years are 4300 Wh/m², 2700 J/m² and 130 mW/m² for global horizontal irradiance (GHI), erythemally weighted daily dose of UV irradiance (EDD) and erythemally weighted UV irradiance at local solar noon time (EDR), respectively. Solar, UV irradiances and the ratio of UV to solar irradiance all increased toward the South and in some areas with high altitude, suggesting that using solar irradiance as indicator of UV irradiance in studies covering large geographic regions may bias the true pattern of UV exposure. National annual average daily solar and UV irradiances increased significantly over the years by about 0.3% and 0.5% per year, respectively. Both datasets are available to the public through CDC's Tracking network. The UV irradiance dataset is currently the only publicly-available, spatially-resolved, and long-term UV irradiance dataset covering the contiguous United States. These datasets help us understand the spatial distributions and temporal trends of solar and UV irradiances, and allow for improved characterization of UV and sunlight exposure in future studies.
Показать больше [+] Меньше [-]