Уточнить поиск
Результаты 1-10 из 43
High-rate anaerobic treatment of digestate using fixed film reactors
2019
Ülgüdür, Nilüfer | Ergüder, Tuba H. | Uludağ-Demirer, Sibel | Demirer, Göksel N.
The effluent stream of the anaerobic digestion processes, the digestate, accommodates high residual organic content that needs to be further treated before discharge. Anaerobic treatment of digestate would not only reduce the residual organic compounds in digestate but also has a potential to capture the associated biogas. High-rate anaerobic reactor configurations can treat the waste streams using lower hydraulic retention times which requires less footprint opposed to the conventional completely stirred tank reactors. This study investigated the high-rate anaerobic treatment performance and the associated biogas capture from the digestate of a manure mixture composed of 90% laying hen and 10% cattle manures in fixed-film reactors. The results indicated that it was possible to reduce total chemical oxygen demand content of the digestate by 57–62% in 1.3–1.4 days of hydraulic retention time. The corresponding biogas yields obtained were in the range of 0.395–0.430 Lbiogas/g VSadded which were found to be comparable to many raw feedstocks. Moreover, significant total phosphorus reduction (36–47%) and greenhouse gas capture (over 14.5–18.1 tCO2e/d per m3 digestate) were also recorded in the anaerobic fixed-film reactors.
Показать больше [+] Меньше [-]Transformation of four silver/silver chloride nanoparticles during anaerobic treatment of wastewater and post-processing of sewage sludge
2013
Lombi, Enzo | Donner, Erica | Taheri, Shima | Tavakkoli, Ehsan | Jämting, Åsa K. | McClure, Stuart | Naidu, R. | Miller, Bradley W. | Scheckel, Kirk G. | Vasilev, Krasimir
The increasing use of silver (Ag) nanoparticles [containing either elemental Ag (Ag-NPs) or AgCl (AgCl-NPs)] in commercial products such as textiles will most likely result in these materials reaching wastewater treatment plants. Previous studies indicate that a conversion of Ag-NPs to Ag2S is to be expected during wastewater transport/treatment. However, the influence of surface functionality, the nature of the core structure and the effect of post-processing on Ag speciation in sewage sludge/biosolids has not been investigated. This study aims at closing these knowledge gaps using bench scale anaerobic digesters spiked with Ag nitrate, three different types of Ag-NPs, and AgCl-NPs at environmentally realistic concentrations. The results indicate that neither surface functionality nor the different compositions of the NP prevented the formation of Ag2S. Silver sulfides, unlike the sulfides of other metals present in sewage sludge, were stable over a six month period simulating composting/stockpiling.
Показать больше [+] Меньше [-]High-frequency assessment of air and water quality at a concentration animal feeding operation during wastewater application to spray fields
2021
Sousan, Sinan | Iverson, Guy | Humphrey, Charles | Lewis, Ashley | Streuber, Dillon | Richardson, Lauren
Air and water quality at a concentrated animal feeding operation (CAFO) in Eastern North Carolina that uses a covered lagoon and anaerobic digester was evaluated for 2 weeks in August 2020. Real-time PM₂.₅ mass concentrations were determined using a reference ADR-1500 nephelometer and high-frequency measurements of dissolved inorganic nitrogen (DIN) were evaluated using autonomously logging sensors. Air and water quality parameters were assessed before, during and after wastewater from the lagoon was irrigated onto adjacent spray fields. Reference measurements were conducted alongside a HOBO weather station to collect real-time wind speed and direction, temperature, and humidity measurements. PM₂.₅ concentrations varied between 0 and 159 μg/m³ with an average concentration of 11 μg/m³, below EPA standard for secondary aerosols of 15 μg/m³. Higher PM₂.₅ concentrations were observed when wind originated from swine barns but not from covered lagoons. Water quality data showed that DIN concentrations downgradient from the CAFO were elevated relative to upstream concentrations. A groundwater seep that drains a spray field contained the highest average DIN concentration (31.0 ± 12.8 mg L⁻¹), which was 25 times greater than upstream DIN concentrations (1.2 ± 0.8 mg L⁻¹). Average DIN concentration at the downstream station was lower than the seep concentration (8.6 ± 16.2 mg L⁻¹), but approximately 8 times greater than upstream. Air quality data show that the lagoon cover was effective at mitigating air quality degradation, whereas DIN concentrations in water were similar to previous studies on CAFOs using open lagoons. In addition, air and water quality parameters were significantly (p < 0.001) higher after irrigation, indicating possible influence due to ammonia and nitrate elevation. Additional research is needed to compare high-frequency data collected from swine CAFOs using capped and uncapped lagoon systems to better understand spatiotemporal air and water quality trends of this practice.
Показать больше [+] Меньше [-]Treatment of biodigested coffee processing wastewater using Fenton’s oxidation and coagulation/flocculation
2020
Gomes de Barros, Valciney | Rodrigues, Carmen S.D. | Botello-Suárez, Wilmar Alirio | Duda, Rose Maria | Alves de Oliveira, Roberto | da Silva, Eliana S. | Faria, Joaquim L. | Boaventura, Rui A.R. | Madeira, Luis M.
Biodigested coffee processing wastewater (CPW) presents a high organic load and does not meet the limits imposed by legislation (namely in Brazil) for discharge into water bodies. Anaerobic digestion generally cannot provide a satisfactory organic matter reduction in CPW as a significant fraction of recalcitrant compounds still persists in the treated effluent. So, this study aims to find alternative ways to remove refractory organic compounds from this wastewater in order to improve the biodegradability and reduce the toxicity, which will allow its recirculation back into the anaerobic digester. Three treatment approaches (Fenton’s oxidation - Approach 1, Coagulation/flocculation (C/F) - Approach 2, and the combination of C/F with Fenton’s process - Approach 3) were selected to be applied to the biodigested CPW in order to achieve that objective.The application of the Fenton process under the optimal operating conditions (initial pH = 5.0; T = 55 °C, [Fe³⁺] = 1.8 g L⁻¹ and [H₂O₂] = 9.0 g L⁻¹) increased the biodegradability (the BOD₅:COD ratio raised from 0.34 ± 0.02 in biodigested CPW to 0.44 ± 0.01 after treatment) and eliminated the toxicity (0.0% of Vibrio fischeri inhibition) along with moderate removals of organic matter (51.3%, 55.7% and 39.7% for total organic carbon – TOC, chemical oxygen demand – COD and biochemical oxygen demand - BOD₅, respectively). The implementation of a coagulation/flocculation process upstream from Fenton’s oxidation, under the best operating conditions (pH 10–11 and [Fe³⁺] = 250 mg L⁻¹), also allowed to slightly increase the biodegradability (from 0.34 to 0.47) and reduce the toxicity, whereas providing a higher removal of organic matter (TOC = 76.2%, COD = 76.5 and BOD₅ = 66.3% for both processes together). Approach 1 and Approach 3 showed to be the best ones, implying similar operating costs (∼74 R$ m⁻³/∼17 € m⁻³) and constitute an attractive option for managing biodigested CPW.
Показать больше [+] Меньше [-]Deciphering microbiomes in anaerobic reactors with superior trichloroethylene dechlorination performance at low pH conditions
2020
Chen, Wei-Yu | Wu, Jer-Horng | Chu, Shun-Chieh
Different pH conditions have been demonstrated to affect the activities of dechlorinating populations participating in the successive dechlorination of trichloroethylene to ethylene. However, the mechanism of the effect of pH conditions on the assembly of dechlorinating populations and their relations to the structure, function, and dynamics of the microbiome are unclear. In this study, we evaluated the effects of pH on microbiomes assembled in anaerobic trichloroethylene-dechlorinating reactors under neutral (pH 7.2), acidic (pH 6.2), and alkaline (pH 8.2) conditions. The results revealed that among the reactors, the acidic reactor had the highest efficiency for dechlorination without accumulation of dechlorinated metabolites, even at high loading rates. The results of high-throughput sequencing of the 16S rRNA gene indicated that the microbiomes in the 3 reactors underwent varied dynamic succession. The acidic reactor harbored a higher degree of complex microbes, dechlorinator diversity, and abundance of the Victoria subgroup of Dehalococcoides (1.2 ± 0.1 × 10⁶ cell/mL), which were approximately 10–10²-fold higher than those at neutral and alkaline conditions. The pH settings altered species–species connectivity and complexity of microbial interaction networks, with more commensal interactions in the dechlorinators of the acidic reactor. As predicted, abundances of several functional gene categories were in strong linearity with pH values, and the microbiome possessed significantly more abundant functions in the acidic reactor (P < 0.001), such as potentially stimulating hydrogen production, cobalamin synthesis, cobalt transport, transport and metabolism of amino acids and secondary metabolites, cell motility, and transcription. All results of microbiomic analyses consistently revealed the observed superior dechlorination process and suggested an association of the reductive dechlorination process with the pH-dependent microbiome. The results of this study provide a new insight into the trichloroethylene dechlorination with regards to pH, and they will be useful for improving bioremediation and management of trichloroethylene-contaminated sites.
Показать больше [+] Меньше [-]Four decades since the ban, old urban wastewater treatment plant remains a dominant source of PCBs to the environment
2019
Needham, Trevor P. | Ghosh, Upal
Despite the ban on new manufacture and commercial use of PCBs, municipal sewer systems continue to serve as ongoing secondary sources for contamination in receiving water bodies. Ongoing PCB sources have made it difficult to achieve desired recovery after implementation of sediment cleanup efforts. We report on a 16-month surveillance to determine the inputs, fate, and export of PCBs within a municipal waste collection/treatment system by strategic sampling of the freely-dissolved and biosolids-associated PCBs. The total PCBs entering the treatment plant was found to be 170 g/day of which 100 g/day exited the plant associated with the biosolids and 5.2 g/day was discharged in the form of freely-dissolved PCBs in the effluent. A net loss of 68 g/day was calculated for the plant, attributable to volatilization and biodegradation. Freely dissolved PCBs in the treated effluent was an order of magnitude higher than the water quality criteria for the protection of human health through fish consumption and found to be a major contributor to the dissolved concentration in the receiving river. Predicted bioaccumulation in fish from dissolved PCBs in the effluent exceeded the threshold for human consumption. The biosolids, currently land-applied as fertilizer, contained an average PCB concentration of 760 μg/kg. The sludge produced in this treatment plant is processed in large anaerobic digesters and changes to the homolog distribution point to some microbial dechlorination. Application of biosolids to clean agricultural soil resulted in a 6-fold increase in PCB levels in the earthworm E. fetida which could be eliminated by the amendment of 1% by weight of activated carbon.
Показать больше [+] Меньше [-]Metagenomics reveal triclosan-induced changes in the antibiotic resistome of anaerobic digesters
2018
Fujimoto, Masanori | Carey, Daniel E. | McNamara, Patrick J.
Triclosan (TCS) is a broad-spectrum antimicrobial used in a variety of consumer products. While it was recently banned from hand soaps in the US, it is still a key ingredient in a top-selling toothpaste. TCS is a hydrophobic micropollutant that is recalcitrant under anaerobic digestion thereby resulting in high TCS concentrations in biosolids. The objective of this study was to determine the impact of TCS on the antibiotic resistome and potential cross-protection in lab-scale anaerobic digesters using shotgun metagenomics. It was hypothesized that metagenomics would reveal selection for antibiotic resistance genes (ARGs) not previously found in pure culture studies or mixed-culture studies using targeted qPCR. In this study, four different levels of TCS were continuously fed to triplicate lab-scale anaerobic digesters to assess the effect of TCS levels on the antibiotic resistance gene profiles (resistome). Blasting metagenomic reads against antibiotic/metal resistance gene database (BacMet) revealed that ARG diversity and abundance changed along the TCS concentration gradient. While loss of bacterial diversity and digester function were observed in the digester treated with the highest TCS concentration, FabV, which is a known TCS resistance gene, increased in this extremely high TCS environment. The abundance of several other known ARG or metal resistance genes (MRGs), including corA and arsB, also increased as the concentrations of TCS increased. Analysis of other functional genes using SEED database revealed the increase of potentially key genes for resistance including different types of transporters and transposons. These results indicate that antimicrobials can alter the abundance of multiple resistance genes in anaerobic digesters even when function (i.e. methane production) is maintained. This study also suggests that enriched ARGs could be released into environments with biosolids land application.
Показать больше [+] Меньше [-]Proteogenomics identification of TBBPA degraders in anaerobic bioreactor
2022
Macêdo, Williane Vieira | Poulsen, Jan Struckmann | Zaiat, Marcelo | Nielsen, Jeppe Lund
Tetrabromobisphenol A (TBBPA) is the most used flame retardant worldwide and has become a threat to aquatic ecosystems. Previous research into the degradation of this micropollutant in anaerobic bioreactors has suggested several identities of putative TBBPA degraders. However, the organisms actively degrading TBBPA under in situ conditions have so far not been identified. Protein-stable isotope probing (protein-SIP) has become a cutting-edge technique in microbial ecology for enabling the link between identity and function under in situ conditions. Therefore, it was hypothesized that combining protein-based stable isotope probing with metagenomics could be used to identify and provide genomic insight into the TBBPA-degrading organisms. The identified ¹³C-labelled peptides were found to belong to organisms affiliated to Phytobacter, Clostridium, Sporolactobacillus, and Klebsilla genera. The functional classification of identified labelled peptides revealed that TBBPA is not only transformed by cometabolic reactions, but also assimilated into the biomass. By application of the proteogenomics with labelled micropollutants (protein-SIP) and metagenome-assembled genomes, it was possible to extend the current perspective of the diversity of TBBPA degraders in wastewater and predict putative TBBPA degradation pathways. The study provides a link to the active TBBPA degraders and which organisms to favor for optimized biodegradation.
Показать больше [+] Меньше [-]Effects of methanol, sodium citrate, and chlorella powder on enhanced anaerobic treatment of coal pyrolysis wastewater
2022
Shi, Jingxin | Wan, Ning | Han, Hongjun
To better promote environment friendly development of the coal chemical industry, this study investigated effects of methanol, sodium citrate, and chlorella powder (a type of microalgae) as co-metabolic substances on enhanced anaerobic treatment of coal pyrolysis wastewater with anaerobic sludge. The anaerobic sludge was loaded into four 2 L anaerobic reactors for co-metabolism enhanced anaerobic experiments. Anaerobic reactor 1 (R1) as control group did not add a co-metabolic substance; anaerobic reactor 2 (R2) added methanol; anaerobic reactor 3 (R3) added sodium citrate; and anaerobic reactor 4 (R4) added chlorella powder. In the blank control group, the removal ratios of total phenol (TPh), quinoline, and indole were only 12.07%, 42.15%, and 50.47%, respectively, indicating that 50 mg/L quinoline, 50 mg/L indole, and 600 mg/L TPh produced strong toxicity inhibition function on the anaerobic microorganism in reactor. When the concentration of methanol, sodium citrate, and chlorella was 400 μg/L, the reactors with co-metabolic substances had better treatment effect on TPh. Among them, the strengthening effects of sodium citrate (TPh removal ratio: 44.87%) and chlorella (47.85%) were better than that of methanol (38.72%) and the control group (10.62%). Additionally, the reactors with co-metabolic substances had higher degradation ratios on quinoline, indole, and chemical oxygen demand (COD). The data of extracellular polymeric substances showed that with the co-metabolic substances, anaerobic microorganisms produced more humic acids by degrading phenols and nitrogen-containing heterocyclic compounds (NHCs). Compared with the control group, the reactors added with sodium citrate and chlorella had larger average particle size of sludge. Thus, sodium citrate and chlorella could improve sludge sedimentation performance by increasing the sludge particle size. The bacterial community structures of reactors were explored and the results showed that Aminicenantes genera incertae sedis, Levinea, Geobacter, Smithella, Brachymonas, and Longilinea were the main functional bacteria in reactor added with chlorella.
Показать больше [+] Меньше [-]Occurrence and transformation of veterinary antibiotics and antibiotic resistance genes in dairy manure treated by advanced anaerobic digestion and conventional treatment methods
2018
Wallace, Joshua S. | Garner, Emily | Pruden, Amy | Aga, Diana S.
Manure treatment technologies are rapidly developing to minimize eutrophication of surrounding environments and potentially decrease the introduction of antibiotics and antibiotic resistant genes (ARGs) into the environment. While laboratory and pilot-scale manure treatment systems boast promising results, antibiotic and ARG removals in full-scale systems receiving continuous manure input have not been evaluated. The effect of treatment on ARGs is similarly lacking. This study examines the occurrence and transformation of sulfonamides, tetracyclines, tetracycline degradation products, and related ARGs throughout a full-scale advanced anaerobic digester (AAD) receiving continuous manure and antibiotic input. Manure samples were collected throughout the AAD system to evaluate baseline antibiotic and ARG input (raw manure), the effect of hygenization (post-pasteurized manure) and anaerobic digestion (post-digestion manure) on antibiotic and ARG levels. Antibiotics were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS), and the ARGs tet(O), tet(W), sul1 and sul2 were analyzed by quantitative polymerase chain reaction (Q-PCR). Significant reductions in the concentrations of chlortetracycline, oxytetracycline, tetracycline and their degradation products were observed in manure liquids following treatment (p < 0.001), concomitant to significant increases in manure solids (p < 0.001). These results suggest sorption is the major removal route for tetracyclines during AAD. Significant decreases in the epimer-to-total residue ratios for chlortetracycline and tetracycline in manure solids further indicate degradation is desorption-limited. Moreover, sul1 and sul2 copies decreased significantly (p < 0.001) following AAD in the absence of sulfonamide antibiotics, while tetracyclines-resistant genes remained unchanged. A cross-sectional study of dairy farms utilizing natural aeration and liquid-solid separation treatments was additionally performed to compare levels of antibiotics and ARGs found in AAD with the levels in common manure management systems. The concentration of antibiotics in raw manure varied greatly between farms while minimal differences in ARGs were observed. However, significant (p < 0.01) differences in the levels of antibiotics and ARGs (except tet(W)) were observed in the effluents from the three different manure management systems.
Показать больше [+] Меньше [-]