Уточнить поиск
Результаты 1-10 из 103
Increasing salinization of freshwater limits invasiveness of a live-bearing fish: Insights from behavioral and life-history traits
2022
Zhou, Linjun | Liu, Kai | Zhao, Yu | Cui, Ling | Dong, Chenglong | Wang, Zaizhao
Biological invasions and continued salinization of freshwater are two global issues with largely serious ecological consequences. Increasing salinity in freshwater systems, as an environmental stressor, may negatively affect normal life activities in fish. It has been documented that salinity limits the invasive success of alien species by mediating physiological and life-history performances, however, there are few studies on how salinity affects its invasive process via altered behaviors. Using wild-caught invasive western mosquitofish (Gambusia affinis) as animal model, in this study, we asked whether gradual increasing salinity affects behaviors (personality and mate choice decision here), life-history traits, as well as the correlation between them by exposing G. affinis to three levels salinity (freshwater, 10 and 20‰). Results showed that, with increased salinity, male tended to be shyer, less active, less sociable, and reduced desire to mate, and female tended to be shyer, less active and lost preferences for the larger male. Furthermore, across salinity treatments, male exhibited reduced body fat content and rising reproduction allocation, however, pregnant female revealed diametrically opposed trends. In addition, the correlation between life-history traits and behaviors was only identified in pregnant female. It seems that either salinity or life-history traits directly affects mosquitofish behaviors. In summary, our results partially emphasize the harmful consequences of salinity on both life-history traits and behavioral performances. These findings provide a novel perspective on how salinity potentially affect fish fitness via altering personalities, mate choice decisions, as well as body condition, and hence supports the idea that salinity could affect the spread of invasive mosquitofish.
Показать больше [+] Меньше [-]Effect of polystyrene nanoplastics on cell apoptosis, glucose metabolism, and antibacterial immunity of Eriocheir sinensis
2022
Nan, Xingyu | Jin, Xingkun | Song, Yu | Zhou, Kaimin | Qin, Yukai | Wang, Qun | Li, Weiwei
The adverse effects of plastic waste and nanoplastics on the water environment have become a focus of global attention in recent years. In the present study, using adult Chinese mitten crabs (Eriocheir sinensis) as an animal model, the bioaccumulation and the in vivo and in vitro toxicity of polystyrene nanoplastics (PS NPs), alone or in combination with the bacteria, were investigated. This study aimed to investigate the effects of PS NPs on apoptosis and glucose metabolism in Chinese mitten crabs, and whether PS NPs could synergistically affect the antibacterial immunity of crabs. We observed that NPs were endocytosed by hemocytes, which are immune cells in crustaceans and are involved in innate immunity. The RNA sequencing data showed that after hemocytes endocytosed NPs, apoptosis and glucose metabolism-related gene expression was significantly induced, resulting in abnormal cell apoptosis and a glucose metabolism disorder. In addition, exposure to NPs resulted in changes in the antimicrobial immunity of crabs, including changes in antimicrobial peptide expression, survival, and bacterial clearance. In summary, NPs could be endocytosed by crab hemocytes, which adversely affected the cell apoptosis, glucose metabolism, and antibacterial immunity of Eriocheir sinensis. This study revealed the effects of NPs on crab immunity and lays the foundation for further exploration of the synergistic effect of NPs and bacteria.
Показать больше [+] Меньше [-]Characterization of allergenicity of Platanus pollen allergen a 3 (Pla a 3) after exposure to NO2 and O3
2021
Zhou, Shumin | Wang, Xingzi | Lu, Senlin | Yao, Chuanhe | Zhang, Luying | Rao, Lanfang | Liu, Xinchun | Zhang, Wei | Li, Shuijun | Wang, Weiqian | Wang, Qingyue
Pollen allergens, widely present in the atmosphere, are the main cause of seasonal respiratory diseases that affect millions of people worldwide. Although previous studies have reported that nitrogen dioxide (NO₂) and ozone (O₃) promote pollen allergy, the specific biological processes and underlying mechanisms remain less understood. In this study, Platanus pollen grains were exposed to gaseous pollutants (NO₂ and O₃). We employed environmental electron microscopy, flow cytometry, western blot assay, enzyme-linked immunoassay, ultraviolet absorption spectrometry, circular dichroism, and protein mass spectrometry to characterise the subpollen particles (SPPs) released from pollen grains. Furthermore, we determined the immunogenicity and pathogenicity induced by Platanus pollen allergen a 3 (Pla a 3). Our results demonstrated that NO₂ and O₃ could damage the pollen cell membranes in SPPs and increase the amount of Pla a 3 allergen released into the atmosphere. Additionally, NO₂ and O₃ altered the structure of Pla a3 protein through nitrification and oxidation, which not only enhanced the immunogenicity of allergens but also increased the stability of the protein. In vivo analysis using an animal model indicated that NO₂ and O₃ greatly aggravated pollen-induced pneumonia. Thus, our study provides guidance for the prevention of pollen allergic diseases.
Показать больше [+] Меньше [-]Heat stress during late gestation disrupts maternal microbial transmission with altered offspring’s gut microbial colonization and serum metabolites in a pig model
2020
He, Jianwen | Zheng, Weijiang | Tao, Chengyuan | Guo, Huiduo | Xue, Yongqiang | Zhao, Ruqian | Yao, Wen
Heat stress (HS) during gestation has been associated with negative outcomes, such as preterm birth or postnatal metabolic syndromes. The intestinal microbiota is a unique ecosystem playing an essential role in mediating the metabolism and health of mammals. Here we hypothesize late gestational HS alters maternal microbial transmission and structures offspring’s intestinal microbiota and serum metabolic profiles. Our results show maternal HS alters bacterial β-diversity and composition in sows and their piglets. In the maternal intestine, genera Ruminococcaceae UCG-005, [Eubacterium] coprostanoligenes group and Halomonas are higher by HS (q < 0.05), whereas the populations of Streptococcus, Bacteroidales RF16 group_norank and Roseburia are decreased (q < 0.05). In the maternal vagina, HS mainly elevates the proportions of phylum Bacteroidetes and Fusobacteria (q < 0.05), whereas reduces the population of Clostridiales Family XI (q < 0.05). In the neonatal intestine, maternal HS promotes the population of Proteobacteria but reduces the relative abundance of Firmicutes (q < 0.05). Moreover, the core Operational taxonomic units (OTU) analysis indicates the proportions of Clostridium sensu stricto 1, Romboutsia and Turicibacter are decreased by maternal HS in the intestinal and vaginal co-transmission, whereas that of phylum Proteobacteria and Epsilonbacteraeota, such as Escherichia-Shigella, Klebsiella, Acinetobacter, and Comamonas are increased in both the intestinal and vaginal co-transmission and the vagina. Additionally, Aeromonas is the only genus that is transmitted from environmental sources. Lastly, we evaluate the importance of neonatal differential OTU for the differential serum metabolites. The results indicate Acinetobacter significantly contributes to the differences in the adrenocorticotropic hormone (ACTH) and glucose levels due to HS (P < 0.05). Further, Stenotrophomonas is the most important variable for Cholesterol, low-density lipoprotein (LDL), diamine oxidase (DAO), blood urea nitrogen (BUN) and 5-hydroxytryptamine (5-HT) (P < 0.10). Overall, our data provides evidence for the maternal HS in establishing the neonatal microbiota via affecting maternal transmission, which in turn affects the maintenance of metabolic health.
Показать больше [+] Меньше [-]Effects of endocrine disrupting chemicals in pigs
2020
Yang, Changwon | Song, Gwonhwa | Lim, Whasun
Endocrine-disrupting chemicals (EDCs) are compounds that interfere with the expression, synthesis, and activity of hormones in organisms. They are released into the environment from flame retardants and products containing plasticizers. Persistent pesticides, such as dichlorodiphenyltrichloroethane (DDT) and hexachlorobenzene, also disrupt the endocrine system through interaction with hormone receptors. Endogenous hormones, such as 17β-estradiol (E2), are released in the urine and feces of farm animals and seep into terrestrial and aquatic ecosystems through sewage. Pigs are widely used as animal models to determine the effects of EDCs because they are physiologically, biochemically, and histologically similar to humans. EDCs primarily disrupt the reproductive and nervous systems of pigs. Moreover, embryonic development during the prenatal and early postnatal periods is particularly sensitive to EDCs. Mycotoxins, such as zearalenone, are food contaminants that alter hormonal activities in pigs. Mycotoxins also alter the innate immune system in pigs, making them vulnerable to diseases. It has been reported that farm animals are exposed to various types of EDCs, which accumulate in tissues, such as those of gonads, livers, and intestines. There is a lack of an integrated understanding of the impact of EDCs on porcine reproduction and development. Thus, this article aims to provide a comprehensive review of literature regarding the effects of EDCs in pigs.
Показать больше [+] Меньше [-]High and low temperatures aggravate airway inflammation of asthma: Evidence in a mouse model
2020
Deng, Linjing | Ma, Ping | Wu, Yang | Ma, Yongsheng | Yang, Xu | Li, Yuguo | Deng, Qihong
Epidemiology suggests ambient temperature is the triggers and potential activator of asthma. The role of high and low temperatures on airway inflammation of asthma, and the underlying molecular mechanism are not yet understood. A mouse model of asthma was adopted in our experiment. The BALB/c mice were exposed at different temperature for 4 h (2 h in the morning and 2 h in the afternoon) on weekday. The exposure temperatures were 10 °C, 24 °C and 40 °C. Ovalbumin (OVA) was used to sensitize the mice on days 14, 18, 22, 26, and 30, followed by an aerosol challenge for 30 min from day 32–38. After the final OVA challenge, lung function, serum protein and pulmonary inflammation were assessed. Comparing the OVA with the saline group at 24 °C, we saw a significant increase in: serum Total-IgE (p < 0.05); OVA-sIgE (p < 0.01); IL-4 (p < 0.05); IL-1β (p < 0.01); IL-6 (p < 0.01); TNF-α (p < 0.01); and the ratio of IL-4/IFN-γ (p < 0.01). At the same time, there was a significant decrease in IFN-γ (p < 0.01). As the temperature increase, there is a U shape for immune proteins and pro-inflammatory factors with a peak value at 24 °C, exception for IFN-γ (inverted U-shape). After the high and low temperature exposure, the Ri and Re increased significantly, while Cldyn decreased significantly compared with the 24 °C group. Histopathological analysis of the OVA groups showed airway remodeling, airway wall thickening and deforming, and subepithelial fibrosis. More obvious changes were found in the high and low temperature exposure groups. The immunohistochemistry suggested that TRPs changed with temperatures. High and low temperatures can aggravate airway inflammation in a mouse model of asthma. TRPs play an important role in temperature aggravation of allergic asthma. The results suggest that asthmatics should avoid exposure to high and low temperatures for too long time.
Показать больше [+] Меньше [-]MicroRNA-382-5p is involved in pulmonary inflammation induced by fine particulate matter exposure
2020
Zhang, Xinwei | Zhang, Yanshu | Meng, Qingtao | Sun, Hao | Wu, Shenshen | Xu, Jie | Yun, Jun | Yang, Xi | Li, Bin | Zhu, Hao | Xue, Ling | Li, Xiaobo | Chen, Rui
Exposure to atmospheric particulate matter (PM) has been related to the increasing incidence and mortality of pulmonary diseases, where microRNAs (miRNAs) play significant roles in these biological and pathological processes. In the present study, we found that miR-382-5p played an anti-inflammatory role in pulmonary inflammation induced by fine particulate matter (PM₂.₅) or diesel exhaust particles (DEPs) in vitro and in vivo. The expression level of miR-382-5p was downregulated, while its target gene, namely CXCL12, was elevated in HBE cells after exposure to PM₂.₅ or DEPs. Mechanistically, PM₂.₅ or DEPs exposure increased CXCL12/MMP9 expression via miR-382-5p inhibition, subsequently triggered pulmonary inflammation. Furthermore, antagonizing the function of CXCL12 significantly reduced the expression of MMP9 and local inflammation induced by PM₂.₅ or DEPs. PM₂.₅ or DEPs caused apoptosis and G1 phase arrest could be partially restored by overexpression of miR-382-5p and antagonism of CXCL12. In a murine model, enhanced miR-382-5p expression effectively reduced expression levels of CXCL12, MMP9 and inflammatory cytokines, hereby protected lung tissues against PM₂.₅ or DEPs-induced lesions. Collectively, the miR-382-5p/CXCL12/MMP9 pathway may provide a mechanism, which mediates inflammatory response to PM₂.₅ or DEPs exposure.
Показать больше [+] Меньше [-]Excretion characteristics and tissue accumulation of tetrabromobisphenol-A in male rats after sub-chronic inhalation exposure
2020
Yu, Yun jiang | Chen, Xi chao | Wang, Zheng-Dong | Liu, Liting | Ge, Qing zhi | Wang, Qiong | Zhang, Yan ping | Yu, Zi ling | Ma, Rui xue
Tetrabromobisphenol-A (TBBPA) is an emerging organic pollutant and a commonly used brominated flame retardant that has received much attention owing to its toxicity. Although TBBPA is ubiquitously detected in atmospheric particulate matter and dust, few studies have investigated the sub-chronic inhalation exposure to TBBPA. To further understand the excretion characteristics and tissue accumulation of TBBPA after inhalation exposure, we used the rat model to conduct a sub-chronic inhalation exposure study. Male rats were administered with different doses of aerosol TBBPA (12.9, 54.6, 121.6, and 455.0 mg/m³). TBBPA was found in the excretion (feces and urine) and all the target tissues (lung, liver, heart, thymus gland, spleen, testicles, muscles, kidneys, brain and serum). Feces were the main route of excretion, which contributed 19.18% to 72.54% (urine <0.10%). TBBPA excretion through feces following inhalation administration was much higher than that following oral and dermal exposure, thereby indicating lower bioavailability of TBBPA under inhalation exposure. Liver and serum showed higher levels of TBBPA compared with those of other tissues, thereby suggesting tissue-specific accumulation of TBBPA in rats. Owing to the relative non-invasiveness of serum sampling and greatest TBBPA concentration among the tissues, serum is a suitable matrix for estimation of TBBPA bioaccumulation after inhalation exposure.
Показать больше [+] Меньше [-]The role of Hipk2-p53 pathways in arsenic-induced autistic behaviors: A translational study from rats to humans
2020
Zhou, Hao | Lin, Yan | Zhao, Weiqing | Teng, Yanbo | Cui, Yuxia | Wang, Tianqi | Li, Chunpei | Jiang, Yong-hui | Zhang, Junfeng (Jim) | Wang, Yi
Previous studies have associated the risk of autism spectrum disorder (ASD) with increased exposures to metals and metalloids such as arsenic. In this study, we used an animal-to-human translational strategy to identify key molecular changes that potentially mediated the effects of arsenic exposures on ASD development. In a previously established rat model, we have induced autistic behaviors in rat pups with gestational arsenic exposures (10 and 45 μg/L As₂O₃ in drinking water). Neuronal apoptosis and the associated epigenetic dysregulations in frontal cortex were assayed to screen potential mediating pathways, which were subsequently validated with qPCR, western blotting, and immunohistochemistry analyses. Furthermore, the identified pathway, along with serum levels of 26 elements including arsenic, were characterized in a case-control study with 21 ASD children and 21 age-matched healthy controls. In animals, we found that arsenic exposures caused difficulties of social interaction and increased stereotypic behaviors in a dose-dependent manner, accompanied by increased neuronal apoptosis and upregulation of Hipk2-p53 pathway in the frontal cortex. In humans, we found that serum levels of Hipk2 and p53 were 24.7 (95%CI: 8.5 to 43.4) % and 23.7 (95%CI: 10.5 to 38.5) % higher in ASD children than in healthy controls. ASD children had significantly higher serum levels of 15 elements, among which arsenic, silicon, strontium, and vanadium were positively associated with both Hipk2 and p53. Results from both the rat arsenic exposure and human case-control studies suggest a likely role of Hipk2-p53 pathway in ASD development induced by exposures to environmental pollutants such as arsenic.
Показать больше [+] Меньше [-]Metabolomics analysis of a mouse model for chronic exposure to ambient PM2.5
2019
Xu, Yanyi | Wang, Wanjun | Zhou, Ji | Chen, Minjie | Huang, Xingke | Zhu, Yaning | Xie, Xiaoyun | Li, Weihua | Zhang, Yuhao | Kan, Haidong | Ying, Zhekang
Chronic ambient fine particulate matter (PM₂.₅) exposure correlates with various adverse health outcomes. Its impact on the circulating metabolome−a comprehensive functional readout of the interaction between an organism's genome and environment−has not however been fully understood. This study thus performed metabolomics analyses using a chronic PM₂.₅ exposure mouse model. C57Bl/6J mice (female) were subjected to inhalational concentrated ambient PM₂.₅ (CAP) or filtered air (FA) exposure for 10 months. Their sera were then analyzed by liquid chromatography-mass spectrometry (LC-MS) and gas chromatography-mass spectrometry (GC-MS). These analyses identified 2570 metabolites in total, and 148 of them were significantly different between FA- and CAP-exposed mice. The orthogonal partial least-squares discriminant analysis (OPLS-DA) and heatmap analyses displayed evident clustering of FA- and CAP-exposed samples. Pathway analyses identified 6 perturbed metabolic pathways related to amino acid metabolism. In contrast, biological characterization revealed that 71 differential metabolites were related to lipid metabolism. Furthermore, our results showed that CAP exposure increased stress hormone metabolites, 18-oxocortisol and 5a-tetrahydrocortisol, and altered the levels of circadian rhythm biomarkers including melatonin, retinal and 5-methoxytryptophol.
Показать больше [+] Меньше [-]