Уточнить поиск
Результаты 1-10 из 474
Phytoremediation of Tetracycline and Degradation Products from Aqueous Solutions Полный текст
2018
Topal, Murat | Öbek, Erdal | Uslu Şenel, Gülşad | Arslan Topal, E.Işıl
The present study aims at phytoremediation of Lemna gibba L. in aqueous solutions with different concentrations of TC and Degradation Products (DPs). It also tries to determine whether there are differences in TC, ETC, EATC, and ATC levels, accumulated by Lemna gibba L. Exposure concentrations of 50, 100, and 300 ppb have been selected for TC and DPs, showing that the highest TC50, TC100, and TC300 concentrations in the plant have been 23.5+1.1, 80.1+3.9, and 274+13 ppb, respectively, while the highest ETC50, ETC100, and ETC300 have proven to be 39.5+1.9, 47.8+2.4, and 168+8.4 ppb, respectively. The highest EATC50, EATC100, and EATC300 concentrations in the plant have been 45.3+2.3; 65+3.0 and 173+9.0 ppb, respectively, whereas the highest ATC50, ATC100, and ATC300 concentrations in Lemna gibba L. have been 34.7+1.7, 39.6+0.2, and 114+5.6 ppb, respectively. TC, ETC, EATC, and ATC concentrations in Lemna gibba L. have increased with the increase of initial TC, ETC, EATC, and ATC concentration.
Показать больше [+] Меньше [-]Antibiotics Removal in Biological Sewage Treatment Plants Полный текст
2016
Ghosh, Gopal | Hanamoto, S. | Yamashita, N. | Huang, X. | Tanaka, H.
This study investigated the occurrence and removal of 12 antibiotics (ciprofloxacin, enrofloxacin, levofloxacin, norfloxacin, nalidixic acid, azithromycin, clarithromycin, roxithromycin, lincomycin, novobiocin, sulfamethoxazole, trimethoprim) at four sewage treatment plants (STPs): two STPs in Kyoto, Japan and two STPs in Beijing, China. The STPs differed in design and operation conditions, utilized a variety of secondary treatment processes. The antibiotics were frequently detected in influents and effluents, and ranged from ng/L up to lower μg/L. In influent, clarithromycin (1.1–1.6 μg/L) and levofloxacin (3.6–6.8 μg/L) were detected in the highest concentration in Japanese and Chinese STPs, respectively. The overall elimination of the antibiotics were differed between STPs and ranged from negative to >90%. These data demonstrate that there are detectable levels of antibiotics are discharging from STPs, and only some of these antibiotics are being removed in a significant proportion by STPs. It was also observed that biological nutrient removal based sewage treatment processes (anaerobic–anoxic–oxic: A2O; and anoxic–oxic: AO) have relatively higher antibiotics removal efficiencies than oxidation ditch (OD) processes.
Показать больше [+] Меньше [-]Proteomic analysis in the brain and liver of sea bream (Sparus aurata) exposed to the antibiotics ciprofloxacin, sulfadiazine, and trimethoprim Полный текст
2024
Fernandez, R. | Colás Ruiz, Nieves del Rocio | Lara Martín, Pablo Antonio | Fernández Cisnal, R. | Hampel, Miriam | Hampel | Biomedicina, Biotecnología y Salud Pública | Química Física
Antibiotics, frequently detected in aquatic ecosystems, can negatively impact the health of resident organisms. Although the study on the possible effects of antibiotics on these organisms has been increasing, there is still little information available on the molecular effects on exposed non-target organisms. In our study we used a label free proteomic approach and sea bream, Sparus aurata, to evaluate the effects of exposure to environmentally relevant concentrations of the antibiotic compounds ciprofloxacin (CIP), sulfadiazine (SULF) and trimethoprim (TRIM) produced at the protein level. Individuals of sea bream were exposed to single compounds at 5.2 ± 2.1 μg L− 1 of CIP, 3.8 ± 2.7 μg L− 1 of SULF and 25.7 ± 10.8 μg L− 1 of TRIM for 21 days. After exposure, the number of differentially expressed proteins in the liver was 39, 73 and 4 for CIP, SULF and TRIM respectively. In the brain, there was no alteration of proteins after CIP and TRIM treatment, while 9 proteins were impacted after SULF treatment. The differentially expressed proteins were involved in cellular biological, metabolic, developmental, growth and biological regulatory processes. Overall, our study evidences the vulnerability of Sparus aurata, after exposure to environmentally relevant concentrations of the major antibiotics CIP, SULF and TRIM and that their chronic exposure could lead to a stress situation, altering the proteomic profile of key organs such as brain and liver. | Ministerio de Economía y Competitividad (MINECO), Spain Universidad de Cádiz, Spain Asociación Universitaria Iberoamericana de Postgrado, Spain Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España, Spain Latin American Association of Postgraduates | 13 páginas
Показать больше [+] Меньше [-]In vitro immunotoxicity of environmentally representative antibiotics to the freshwater mussel Elliptio complanata. Полный текст
2012
Gust, M. | Gélinas, M. | Fortier, M. | Fournier, M. | Gagné, F. | Fluvial Ecosystem Research ; Environment and Climate Change Canada (ECCC) | Milieux aquatiques, écologie et pollutions (UR MALY) ; Institut national de recherche en sciences et technologies pour l'environnement et l'agriculture (IRSTEA) | Armand-Frappier Santé Biotechnologie Research Centre (INRS-AFSB) ; Institut National de la Recherche Scientifique [Québec] (INRS)-Pasteur Network (Réseau International des Instituts Pasteur)
[Departement_IRSTEA]Eaux [TR1_IRSTEA]BELCA | International audience | The separate and combined in vitro toxic effects of antibiotics (ciprofloxacin, erythromycin, novobiocin, oxytetracycline, sulfamethazole and trimethoprim) commonly found in urban wastewater effluents were assessed on the immune parameters of Elliptio complanata at environmentally relevant concentrations. The observed responses were then compared to those produced by the physicochemical-treated wastewater effluent of a major city before and after the removal of microorganisms. Most of the selected antibiotics, separately and as mixture, induced changes in immune responses. The removal of microorganisms and fine particles from the effluent increased or decreased the resulting immunotoxic effects, depending of the observed parameter. The immunotoxic effects of erythromycin, sulfamethoxazole and trimethoprim were closely associated to the antibiotic mixture and the filtered effluent. In conclusion, the data revealed that the removal of fine particles and microorganisms from municipal effluents can alter the toxic nature of the effluent that is closely associated with the cumulative effects of antibiotics.
Показать больше [+] Меньше [-]The multilevel antibiotic-induced perturbations to biological systems Early-life exposure induces long-lasting damages to muscle structure and mitochondrial metabolism in flies Полный текст
2018
Renault, David | Yousef, Hesham | Mohamed, Amr A | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Cairo University | Faculty of Science, Cairo University | Institut Universitaire de France
International audience | Antibiotics have been increasingly used over the past decades for human medicine, food-animal agriculture, aquaculture, and plant production. A significant part of the active molecules of antibiotics can be released into the environment, in turn affecting ecosystem functioning and biogeochemical processes. At lower organizational scales, these substances affect bacterial symbionts of insects, with negative consequences on growth and development of juveniles, and population dynamics. Yet, the multiple alterations of cellular physiology and metabolic processes have remained insufficiently explored in insects. We evaluated the effects of five antibiotics with different mode of action, i.e. ampicillin, cefradine, chloramphenicol, cycloheximide, and tetracycline, on the survival and ultrastructural organization of the flight muscles of newly emerged blow flies Chrysomya albiceps. Then, we examined the effects of different concentrations of antibiotics on mitochondrial protein content, efficiency of oxidative phosphorylation, and activity of transaminases (Glutamate oxaloacetate transaminase and glutamate pyruvate transaminase) and described the cellular metabolic perturbations of flies treated with antibiotics. All antibiotics affected the survival of the insects and decreased the total mitochondrial protein content in a dose-dependent manner. Ultrastructural organization of flight muscles in treated flies differs dramatically compared to the control groups and severe pathological damages/structures disorganization of mitochondria appeared. The activities of mitochondrial transaminases significantly increased with increased antibiotic concentrations. The oxidation rate of pyruvate + proline from isolated mitochondria of the flight muscles of 1-day-old flies was significantly reduced at high doses of antibiotics. In parallel, the level of several metabolites, including TCA cycle intermediates, was reduced in antibiotics-treated flies. Overall, antibiotics provoked a system-wide alteration of the structure and physiology of flight muscles of the blow fly Ch. albiceps, and may have fitness consequences at the organism level. Environmental antibiotic pollution is likely to have unwanted cascading ecological effects of insect population dynamics and community structure.
Показать больше [+] Меньше [-]The multilevel antibiotic-induced perturbations to biological systems Early-life exposure induces long-lasting damages to muscle structure and mitochondrial metabolism in flies Полный текст
2018
Renault, David | Yousef, Hesham | Mohamed, Amr A
International audience | Antibiotics have been increasingly used over the past decades for human medicine, food-animal agriculture, aquaculture, and plant production. A significant part of the active molecules of antibiotics can be released into the environment, in turn affecting ecosystem functioning and biogeochemical processes. At lower organizational scales, these substances affect bacterial symbionts of insects, with negative consequences on growth and development of juveniles, and population dynamics. Yet, the multiple alterations of cellular physiology and metabolic processes have remained insufficiently explored in insects. We evaluated the effects of five antibiotics with different mode of action, i.e. ampicillin, cefradine, chloramphenicol, cycloheximide, and tetracycline, on the survival and ultrastructural organization of the flight muscles of newly emerged blow flies Chrysomya albiceps. Then, we examined the effects of different concentrations of antibiotics on mitochondrial protein content, efficiency of oxidative phosphorylation, and activity of transaminases (Glutamate oxaloacetate transaminase and glutamate pyruvate transaminase) and described the cellular metabolic perturbations of flies treated with antibiotics. All antibiotics affected the survival of the insects and decreased the total mitochondrial protein content in a dose-dependent manner. Ultrastructural organization of flight muscles in treated flies differs dramatically compared to the control groups and severe pathological damages/structures disorganization of mitochondria appeared. The activities of mitochondrial transaminases significantly increased with increased antibiotic concentrations. The oxidation rate of pyruvate + proline from isolated mitochondria of the flight muscles of 1-day-old flies was significantly reduced at high doses of antibiotics. In parallel, the level of several metabolites, including TCA cycle intermediates, was reduced in antibiotics-treated flies. Overall, antibiotics provoked a system-wide alteration of the structure and physiology of flight muscles of the blow fly Ch. albiceps, and may have fitness consequences at the organism level. Environmental antibiotic pollution is likely to have unwanted cascading ecological effects of insect population dynamics and community structure.
Показать больше [+] Меньше [-]Metagenomic insights into the antibiotic resistome in freshwater and seawater from an Antarctic ice-free area Полный текст
2022
Zhang, Tao | Ji, Zhongqiang | Li, Jun | Yu, Liyan
The comprehensive profiles of antibiotic resistance genes (ARGs) in the Antarctic water environments and their potential health risks are not well understood. The present study characterized the bacterial community compositions and ARG profiles of freshwater (11 samples) and seawater (28 samples) around the Fildes Region (an ice-free area in Antarctica) using a shotgun metagenomic sequencing approach for the first time. There were significant differences in the compositions of the bacterial community and ARG profiles between freshwater and seawater. In the 39 water samples, 114 ARG subtypes belonging to 15 ARG types were detectable. In freshwater, the dominant ARGs were related to multidrug and rifamycin resistance. In seawater, the dominant ARGs were related to peptide, multidrug, and beta-lactam resistance. Both the bacterial community compositions and ARG profiles were significantly related to certain physicochemical properties (e.g., pH, salinity, NO₃⁻). Procrustes analysis revealed a significant correlation between the bacterial community compositions and ARG profiles of freshwater and seawater samples. A total of 31 metagenome-assembled genomes (MAGs) carrying 35 ARG subtypes were obtained and identified. The results will contribute to a better evaluation of the ARG contamination in relation to human health in the Antarctic aquatic environments.
Показать больше [+] Меньше [-]Biochar composite derived from cellulase hydrolysis apple branch for quinolone antibiotics enhanced removal: Precursor pyrolysis performance, functional group introduction and adsorption mechanisms Полный текст
2022
Zou, Mengyuan | Tian, Weijun | Chu, Meile | Gao, Huizi | Zhang, Dantong
In this study, magnetic biochar (MAB) and humic acid (HA)-coated magnetic biochar produced from apple branches without and after cellulase hydrolysis (HMAB and CHMAB, respectively) were prepared and tested as adsorbents of enrofloxacin (ENR) and moxifloxacin (MFX) in aqueous solution. Compared with MAB and HMAB, novel adsorbent CHMAB possessed a superior mesoporous structure, greater graphitization degree and abundant functional groups. When antibiotic solutions ranged from 2 to 20 mg L⁻¹, the theoretical maximum adsorption capacities of CHMAB for ENR and MFX were 48.3 and 61.5 mg g⁻¹ at 35 °C with adsorbent dosage of 0.4 g L⁻¹, respectively, while those of MAB and HMAB were 39.6 and 54.4 mg g⁻¹, and 44.7 and 59.0 mg g⁻¹, respectively. The pseudo-second-order kinetic model and Langmuir model presented a better fitting to the spontaneous and endothermic adsorption process. The maximum adsorption capacity of ENR and MFX onto CHMAB was achieved at initial pH values of 5 and 8, respectively. Additionally, the adsorption capacity of ENR and MFX decreased with increasing concentrations of K⁺ and Ca²⁺ (0.02–0.1 mol L⁻¹). Synergism between the pore-filling effect, π-π electron-donor-acceptor interactions, regular and negative charge-assisted H-bonding, surface complexation, electrostatic interactions and hydrophobic interactions may dominate the adsorption process. This study demonstrated that a novel magnetic biochar composite prepared through pyrolysis of agricultural waste lignocellulose hydrolyzed by cellulase in combination with HA coating was a promising adsorbent for eliminating quinolone antibiotics from aqueous media.
Показать больше [+] Меньше [-]Exploring the impact of biochar supplement on the dynamics of antibiotic resistant fungi during pig manure composting Полный текст
2022
Zhou, Yuwen | Zhang, Zengqiang | Awasthi, Mukesh Kumar
The purpose of this study was to investigate antibiotic resistant fungal (ARF) communities in pig manure (PM) composting employing two different biochar (coconut shell-CSB and bamboo biochar-BB) as amendment. Three treatments (Control, 10% CSB and 10% BB) were designed and indicated with T1 to T3. Experimental results declared that the fungal abundance significantly reduced among the both biochar applied treatments but three dominant phyla Ascomycota, Basidiomycota and Mucoromycota were still relatively greater abundance present. There were significant differences (p < 0.05) in the relative abundance and diversity of fungi among all three treatments. Interestingly, biochar addition regulated the overall fungal community in final compost. Compared with the control group, the abundance of fungi was positively mobilized, and especially CSB showed a better effect. Conclusively, biochar has potential to inhibit and reduce the ARGs population and mobility in compost. Thus, these findings offer new insight to understand the succession of ARFs during PM composting.
Показать больше [+] Меньше [-]Sublethal biochemical, histopathological and genotoxicological effects of short-term exposure to ciprofloxacin in catfish Rhamdia quelen Полный текст
2022
Akiyama Kitamura, Rafael Shinji | Vicentini, Maiara | Perussolo, Maiara Carolina | Lirola, Juliana Roratto | Cirilo dos Santos, Camilla Freitas | Moreira Brito, Júlio César | Cestari, Marta Margarete | Prodocimo, Maritana Mela | Gomes, Marcelo Pedrosa | Silva de Assis, Helena Cristina
Ciprofloxacin (Cipro) is commonly detected in water worldwide, however, the ecotoxicological effects to aquatic biota is still not fully understood. In this study, using multiple biomarkers, it was investigated sublethal effects of short-term exposure to Cipro concentrations (1, 10 and 100 μg.L⁻¹) in the Neotropical catfish Rhamdia quelen compared to non-exposure treatment (Control). After 96 h of exposure, the fishes were anesthetized for blood collection to hematological and genotoxicity biomarkers analysis. After euthanasia, the brain and muscle were sampled for biochemical biomarkers analyses. Gills, liver and posterior kidney for genotoxicity, biochemical and histopathological biomarkers analysis and anterior intestine for histopathological biomarkers analysis. Genotoxicity was observed in all tissues, regardless of the Cipro concentrations. Hematological alterations, such as reduction of the number of erythrocytes and leucocytes, as well as in hematocrit concentration and histopathological damages, such as reduction of microridges in gill epithelium and necrosis in liver and posterior kidney, occurred mainly at 100 μg.L⁻¹. In addition, at 100 μg.L⁻¹, Cipro increased antioxidant system activity (Catalase in liver and posterior kidney). These results demonstrated that under short-term exposure, Cipro causes toxic effects in R. quelen that demands attention and surveillance of environmental aquatic concentrations of this antibiotic.
Показать больше [+] Меньше [-]