Уточнить поиск
Результаты 1-5 из 5
Local environment modulates whole-transcriptome expression in the seagrass Posidonia oceanica under warming and nutrients excess
2022
Pazzaglia, Jessica | Santillán-Sarmiento, Alex | Ruocco, Miriam | Dattolo, Emanuela | Ambrosino, Luca | Marín-Guirao, Lazaro | Procaccini, Gabriele
The intensification of anomalous events of seawater warming and the co-occurrence with local anthropogenic stressors are threatening coastal marine habitats, including seagrasses, which form extensive underwater meadows. Eutrophication highly affects coastal environments, potentially summing up to the widespread effects of global climate changes. In the present study, we investigated for the first time in seagrasses, the transcriptional response of different plant organs (i.e., leaf and shoot apical meristem, SAM) of the Mediterranean seagrass Posidonia oceanica growing in environments with a different history of nutrient enrichment. To this end, a mesocosm experiment exposing plants to single (nutrient enrichment or temperature increase) and multiple stressors (nutrient enrichment plus temperature increase), was performed. Results revealed a differential transcriptome regulation of plants under single and multiple stressors, showing an organ-specific sensitivity depending on plants' origin. While leaf tissues were more responsive to nutrient stress, SAM revealed a higher sensitivity to temperature treatments, especially in plants already impacted in their native environment. The exposure to stress conditions induced the modulation of different biological processes. Plants living in an oligotrophic environment were more responsive to nutrients compared to plants from a eutrophic environment. Evidences that epigenetic mechanisms were involved in the regulation of transcriptional reprogramming were also observed in both plants’ organs. These results represent a further step in the comprehension of seagrass response to abiotic stressors pointing out the importance of local pressures in a global warming scenario.
Показать больше [+] Меньше [-]Role of miR164 in the growth of wheat new adventitious roots exposed to phenanthrene
2021
Li, Jinfeng | Zhang, Huihui | Zhu, Jiahui | Shen, Yu | Zeng, Nengde | Liu, Shiqi | Wang, Huiqian | Wang, Jia | Zhan, Xinhua
Polycyclic aromatic hydrocarbons (PAHs), ubiquitous organic pollutants in the environment, can accumulate in humans via the food chain and then harm human health. MiRNAs (microRNAs), a kind of non-coding small RNAs with a length of 18–30 nucleotides, regulate plant growth and development and respond to environmental stress. In this study, it is demonstrated that miR164 can regulate root growth and adventitious root generation of wheat under phenanthrene exposure by targeting NAC (NAM/ATAF/CUC) transcription factor. We observed that phenanthrene treatment accelerated the senescence and death of wheat roots, and stimulated the occurrence of new roots. However, it is difficult to compensate for the loss caused by old root senescence and death, due to the slower growth of new roots under phenanthrene exposure. Phenanthrene accumulation in wheat roots caused to generate a lot of reactive oxygen species, and enhanced lipoxygenase activity and malonaldehyde concentration, meaning that lipid peroxidation is the main reason for root damage. MiR164 was up-regulated by phenanthrene, enhancing the silence of NAC1, weakening the association with auxin signal, and inhibiting the occurrence of adventitious roots. Phenanthrene also affected the expression of CDK (the coding gene of cyclin-dependent kinase) and CDC2 (a gene regulating cell division cycle), the key genes in the cell cycle of pericycle cells, thereby affecting the occurrence and growth of lateral roots. In addition, NAM (a gene regulating no apical meristem) and NAC23 may also be related to the root growth and development in wheat exposed to phenanthrene. These results provide not only theoretical basis for understanding the molecular mechanism of crop response to PAHs accumulation, but also knowledge support for improving phytoremediation of soil or water contaminated by PAHs.
Показать больше [+] Меньше [-]Genotoxicity and Anatomical Root Changes in Allium cepa L. (Amaryllidaceae) Caused by the Effluent of the Processing of Ornamental Rocks
2015
Teixeira, Mairy Bitencourt | Fernandes, Ítalo Antônio | de Castro, Evaristo Mauro | Techio, Vânia Helena
The effluent of the ornamental rock industry is characterized by presenting great concentrations of total solids, high contents of iron, and elevated pH, all responsible for the contamination of the superficial and ground waters, destruction of the soil, the vegetation, and the silting of the rivers. The purpose of this study is to assess the cytotoxic and genotoxic effects and the anatomical changes caused by the effluents arising from the ornamental rock polishing industry in root apex cells of Allium cepa L. (Amaryllidaceae). The samples of the effluent were collected in a polishing industry located in Nova Venécia, State of Espírito Santo, and were analyzed by mass spectrometry and atomic emission. Bulbs of A. cepa were exposed to the effluent at 12.5, 25, 37.5, 50, 75, and 100 % concentrations (residue in raw form) (v/v) for a period of 20 days. For the positive control, metilmethanesulfonate (MMS) at 4 × 10⁻⁴-M concentration was used, and distilled water was used for the negative control. The experiment was assessed taking into consideration the following parameters: mitotic index, frequency of chromosomal and nuclear abnormalities in the root apical meristem, and root anatomy. The mitotic index suffered a decrease proportional to the increase in the concentration of effluent. All the concentrations of the effluent led to chromosomal and nuclear abnormalities being stickiness and nuclear shoots the most frequent. The root apex evidenced changes that reflected on the decrease of the percentage area of the protoderm and the fundamental meristem and the increase in the areas of the cap and quiescent center. The symptoms of toxicity are related to the high frequency of cell in cellular death process observed in the roots exposed to the higher concentrations and to the decrease in the mitotic index of the apical root meristem.
Показать больше [+] Меньше [-]Morpho-anatomical and growth alterations induced by arsenic in Cajanus cajan (L.) DC (Fabaceae)
2015
Arsenic (As) is a toxic element to most organisms. Studies investigating anatomic alterations due to As exposure in plants are scarce but of utmost importance to the establishment of environmental biomonitoring techniques. So, this study aimed to investigate the effects of As on the development and initial root growth in Cajanus cajan (Fabaceae), characterize and quantify the possible damages, evaluate genotoxic effects, and identify structural markers to be used in environmental bioindication. Plants were exposed hydroponically to 0.5, 1.0, 1.5, and 2.0 mg As L⁻¹, as sodium arsenate. Growth parameters were measured, and in the end of the exposure, root samples were analyzed for qualitative and quantitative anatomical alterations. Arsenic genotoxicity was evaluated through analysis of the mitotic index in the root apex. Compared to the control, As-treated seedlings showed an altered architecture, with significantly decreased root length (due to the lower mitotic index in the apical meristem and reduced elongation of parenchyma cells) with darkened color, and abnormal development of the root cap. A significant increase in vascular cylinder/root diameter ratio was also detected, due to the reduction of the cellular spaces in the cortex. The secondary xylem vessel elements were reduced in diameter and had sinuous walls. The severest damage was visible in the ramification zone, where uncommon division planes of phellogen and cambium cells and disintegration of the parenchyma cells adjacent to lateral roots were observed. The high sensibility of C. cajan to As was confirmed, since it caused severe damages in root growth and anatomy. The main structural markers for As toxicity were the altered root architecture, with the reduction of the elongation zone and increase of ramification zone length, and the root primordia retained within the cortex. Our results show a new approach about As toxicity and indicate that C. cajan is a promising species to be used for bioindication of environmental contamination by As.
Показать больше [+] Меньше [-]Development of Canavalia ensiformis in soil contaminated with diesel oil
2017
Balliana, A. G. | Moura, B. B. | Inckot, R. C. | Bona, C.
Hydrocarbons are the main components of diesel oil and are toxic for the majority of plants. A few plant species, known as phytoremediators, are tolerant of hydrocarbons and can survive the stressful conditions of soils contaminated with diesel oil. Canavalia ensiformis, a plant species that is well distributed throughout the tropics, possesses advantageous features for a potential resistance to soil contamination, such as fast growth and a deep root system. Thus, the aim of the present study was to evaluate the tolerance of C. ensiformis when it was exposed to soil contaminated with diesel oil. Seedlings were subjected to two treatments: contaminated soil (CS) (95 ml/kg of diesel oil) and non-contaminated soil (NCS) for a period of 30 days; its growth, morphology, anatomy, and physiology were analyzed. Despite the high level of toxicity, some individuals were able to survive in CS. These plants had root apical meristems with high levels of mitosis and were able to issue new roots with more developed aerenchyma tissue. Because the surviving plants presented no marks of cellular damage on the organs formed (root and leaves) during the experiment, the species capacity of growth on CS was confirmed. Although, long-term field experiments, applying different contaminant concentrations, should be considered to infer about the species resistance and use as phytoremediator.
Показать больше [+] Меньше [-]