Уточнить поиск
Результаты 1-10 из 58
Fluctuating asymmetry of invertebrate populations as a biological indicator of environmental quality.
1993
Clarke G.M.
Persistent organochlorine residues in harbour porpoise (Phocoena phocoena) from the Black Sea.
1997
Tanabe S. | Madhusree B. | Ozturk A.A. | Tatsukawa R. | Miyazaki N. | Ozdamar E. | Aral O. | Samsun O. | Ozturk B.
Assessing the impact of copper on nematode communities from a chronically metal-enriched estuary using pollution-induced community tolerance.
1995
Millward R.N. | Grant A.
Towards understanding of microflora and microfauna of water bodies in the area of Mali Krs [Serbia, Yugoslavia]
1999
Ratajac, R. (Poljoprivredni fakultet, Novi Sad (Yugoslavia)) | Rajkovic, D. | Stojkovic, S. | Bobic, M.
In April 1997 and 1998 investigations of algae, Rotatoria, Cladocera, Copepoda and Hydracarina were conducted. The investigated localities were 8 small water bodies at around 800 m a.s.l., at Mali Krs, in the surrounding of Bor, Serbia (Yugoslavia). The aim was to examine composition of these groups and to give the evaluation of the quality of water. Among algae, according to the number of taxons, the dominant group was Bacillariophyta (45), then Chlorophyta (17), Cyanophyta (3), Euglenophyta (4), Xanthophyta (1) and Pyrrophyta (1). Rotatoria were present with the highest number of taxons among microfauna. In these investigations 48 taxons were present. The highest number of taxons was among Cephalodella, Corurella, and Trichocerca. Among Cladocera 4 taxons were present, and among Copepoda 9 taxons, and all the present species were found in our previous investigations. Hydracarina were present with 3 species, also with high diversity. Around two thirds of all taxons are oligosaprobionts, which indicates to the good quality of the water.
Показать больше [+] Меньше [-]Diazinon exposure produces histological damage, oxidative stress, immune disorders and gut microbiota dysbiosis in crucian carp (Carassius auratus gibelio) Полный текст
2021
Tang, Jiali | Wang, Wenqian | Jiang, Yuanhe | Chu, Weihua
Diazinon is a common organophosphate pesticide widely used to control parasitic infections in agriculture. Excessive use of diazinon can have adverse effects on the environment and aquatic animal health. In the present study, the toxic effects of diazinon on the histology, antioxidant, innate immune and intestinal microbiota community composition of crucian carp (Carassius auratus gibelio) were investigated. The results showed that diazinon at the tested concentration (300 μg/L) induced gill and liver histopathological damages. Hepatic total superoxide dismutase (T-SOD), catalase (CAT), and glutathione S-transferase (GST) activities significantly decreased (P < 0.05) by 32.47%, 65.33% and 37.34%, respectively. However, the liver tissue malondialdehyde (MDA) content significantly (P < 0.05) increased by 138.83%. The 300 μg/L diazinon significantly (P < 0.05) downregulated the gene expression of TLR4, MyD88, NF-kB p100 and IL-8 but had no significant effect TNF-α (P = 0.8239). In addition, the results demonstrated that diazinon exposure could affect the intestinal microbiota composition and diversity. Taken together, the results of this study indicated that diazinon exposure can cause damage to crucian carp, induce histopathological damage in gill and liver tissues, oxidative stress in the liver, and innate immune disorders and alter intestinal microbiota composition and diversity.
Показать больше [+] Меньше [-]Biodegradation of plastic monomer 2,6-dimethylphenol by Mycobacterium neoaurum B5-4 Полный текст
2020
Ji, Junbin | Zhang, Yanting | Liu, Yongchuang | Zhu, Pingping | Yan, Xin
2,6-Dimethylphenol (2,6-DMP), an important chemical intermediate and the monomer of plastic polyphenylene oxide, is widely used in chemical and plastics industry. However, the pollution problem of 2,6-DMP residues is becoming increasingly serious, which is harmful to some aquatic animals. Microbial degradation provided an effective approach to eliminate DMPs in nature, which is considered as a prospective way to remediate DMPs-contaminated environments. But the 2,6-DMP-degrading bacteria is not available and the molecular mechanism of 2,6-DMP degradation is unclear as well. Here, a 2,6-DMP-degrading bacterium named B5-4 was isolated and identified as Mycobacterium neoaurum. M. neoaurum B5-4 could utilize 2,6-DMP as the sole carbon source for growth. Furthermore, M. neoaurum B5-4 could degrade 2,6-DMP with concentrations ranging from 1 to 500 mg L⁻¹. Six intermediate metabolites of 2,6-DMP were identified and a metabolic pathway of 2,6-DMP in M. neoaurum B5-4 was proposed, in which 2,6-DMP was initially converted to 2,6-dimethyl-hydroquinone and 2,6-dimethyl-3-hydroxy-hydroquinone by two consecutive hydroxylations at C-4 and γ position; 2,6-dimethyl-3-hydroxy-hydroquinone was then subjected to aromatic ring ortho-cleavage to produce 2,4-dimethyl-3-hydroxymuconic acid, which was further transformed to citraconate, and subsequently into TCA cycle. In addition, toxicity bioassay of 2,6-DMP in water using zebrafish indicates that 2,6-DMP is toxic to zebrafish and M. neoaurum B5-4 could effectively eliminate 2,6-DMP in water to protect zebrafish from 2,6-DMP-induced death. This work provides a potential strain for bioremediation of 2,6-DMP-contaminated environments and lays a foundation for elucidating the molecular mechanism and genetic determinants of 2,6-DMP degradation.
Показать больше [+] Меньше [-]Source specific sound mapping: Spatial, temporal and spectral distribution of sound in the Dutch North Sea Полный текст
2019
Sertlek, Hüseyin Özkan | Slabbekoorn, Hans | Cate, Carel ten | Ainslie, Michael A.
Effective measures for protecting and preserving the marine environment require an understanding of the potential impact of anthropogenic sound on marine life. A crucial component is a proper assessment of the anthropogenic soundscape: which sounds are present where, when and how strong? We provide an extensive case study modelling the spatial, temporal and spectral distribution of sound radiated by several anthropogenic sources (ships, seismic airguns, explosives) and a naturally occurring one (wind) in the Dutch North Sea. We present the results as a series of sound maps covering the whole of the Dutch North Sea, showing the spatial and temporal distribution of the energy from these sources. Averaged over a two year period, shipping is responsible for the largest amount of acoustic energy (∼1800 J), followed by seismic surveys (∼300 J), explosions (∼20 J) and wind (∼20 J) in the frequency band between 100 Hz and 100 kHz. Our study shows that anthropogenic sources are responsible for 100 times more acoustic energy (averaged over 2 years) in the Dutch North Sea than naturally occurring sound from wind. The potential impact of these sounds on aquatic animals depends not only on these temporally averaged and spatially integrated broadband energies, but also on the source-specific spatial, spectral and temporal variation. Shipping is dominant in the southern part and along the coast in the north, throughout the years and across the spectrum. Seismic surveys are relatively local and spatially and temporally dependent on exploration activities in any particular year, and spectrally shifted to low frequencies relative to the other sources. Explosions in the southern part contribute wide-extent high energy bursts across the spectrum. Relating modelled sound fields to the temporal and spatial distribution of animal species may provide a powerful tool for understanding the potential impact of anthropogenic sound on marine life.
Показать больше [+] Меньше [-]Molecular oxidative stress markers in olive ridley turtles (Lepidochelys olivacea) and their relation to metal concentrations in wild populations Полный текст
2018
Cortés-Gómez, Adriana A. | Morcillo, Patricia | Guardiola, Francisco A. | Espinosa, Cristobal | Esteban, María A. | Cuesta Arranz, Alberto | Girondot, Marc | Romero, Diego
Due to their longevity and extensive migration areas, marine turtles are able to accumulate diverse contaminants over many years and as a consequence they represent an interesting bioindicator species for marine ecosystem pollution. Metals provoke toxicological effects in many aquatic animal species, but marine turtles have been under-investigated in this area. Thus, we have determined the presence of certain inorganic elements (As, Cd, Cu, Ni, Pb, Se and Zn) in olive ridley turtles (Lepidochelys olivacea) and related them to metallothionein (MT), superoxide dismutase (SOD), catalase (CAT) and glutathione reductase (GR) transcription and/or enzymatic activities. Gene expression of sod, cat and gr was found to be higher in blood than liver or kidney but most of the significant relationships were found in liver, not only for gene expression but also for enzyme activities. This must be related to the role the liver has as the first filter organ. Several positive relationships of sod, cat and gr gene expression in the different tissues were found in this population, as well as very high Cd concentrations. This could mean that these turtles are adapting to the metals-production of ROS and damage through a high transcription of these antioxidants. Multiple positive relationships with GR seem to be part of its compensatory effect due to the decrease of SOD production against the high and chronic exposure to certain xenobiotics. CAT, on the other hand, seems not to be used much, and glutathione detoxification of H₂O₂ may be more important in this species. Finally, despite the very high Cd concentrations found in this population, no significant relationship was found in any tissue with metallothionein gene expression. These results, along with very high Cd concentrations and a negative relationship with Cu, lead us to consider some kind of disruption in mt gene expression in these turtles.
Показать больше [+] Меньше [-]The differential effects of microcystin-LR on mitochondrial DNA in the hippocampus and cerebral cortex Полный текст
2018
Wang, Xiaofen | Xu, Lizhi | Li, Xinxiu | Chen, Jingwen | Zhou, Wei | Sun, Jiapeng | Wang, Yaping
Microcystin-LR (MC-LR) is the most abundant toxicant among microcystin variants produced by cyanobacteria. MC-induced toxicity is broadly reported to pose a threat to aquatic animals and humans and has been associated with the dysfunction of some organs such as liver and kidney. However, MC-induced neurotoxicity has not been well characterized after long-term exposure. This study was designed to investigate the neurotoxic effects after chronic oral administration of MC-LR. In our trial, C57/BL6 mice received MC-LR at 0, 1, 5, 10, 20 and 40 μg/L in drinking water for twelve months. Our data demonstrated that mitochondrial DNA (mtDNA) damage was evident in the damaged neurons as a result of chronic exposure. Histopathological abnormalities and mtDNA damage were observed in the hippocampus and cerebral cortex. Furthermore, MC-LR exerted distinct effects on these two brain regions. The hippocampus was more susceptible to the treatment of MC-LR compared with the cerebral cortex. However, no strong relationships were observed between the genotoxic effects and exposure doses. In conclusion, this study has provided a mtDNA-related mechanism for underlying chronic neurotoxicity of MC-LR and suggested the presence of differential toxicant effects on the hippocampus and cerebral cortex.
Показать больше [+] Меньше [-]Insights into disruption of lipid metabolism in digestive gland of female scallop Chlamys farreri under B[a]P exposure Полный текст
2022
Gao, Zhongyuan | Pan, Luqing | Xu, Ruiyi | Zhou, Yueyao | Li, Dongyu
Lipids are the main energy support during gametogenesis. Digestive gland is the key organ of aquatic animal metabolism for storing nutrition and supplying energy. It participates in a variety of life activities (such as growth, digestion, immunity, and reproduction). Nutrients stored in digestive glands, especially lipids, provide energy for reproductive behaviors such as gametogenesis and ovulation. A large number of studies have confirmed the accumulation of lipids from digestive gland to gonad during gametogenesis. At present, the research on the interference mechanism of persistent organic pollutants (POPs) on lipid metabolism of aquatic animals and the adaptive response of aquatic animals to POPs stress focus on biochemical levels or a few genes. The potential molecular mechanism of lipid metabolism interference needs to be further studied. In addition, as an important stage of aquatic animals, the reproductive period is a vigorous period of lipid metabolism. However, at present, there is no report on the molecular mechanism of POPs interfering with the lipid metabolism of the digestive gland in the reproductive process of aquatic animals. In this study, female scallop C. farreri was cultured in natural seawater and exposed to 4 μg/L B[a]P in seawater. Transcriptome analysis of digestive glands at multiple stages (proliferative stage, growth stage, mature stage and spawn stage) was performed, and iPath pathway analysis was used to analyze lipid metabolism pathways and differential genes. The interference mechanism of lipid metabolism in bivalves during reproductive period was revealed. This study will provide valuable genomic information on the role of digestive glands in lipid metabolism and reproduction of C. farreri, and will contribute to further functional genomics of bivalves and other closely related species.
Показать больше [+] Меньше [-]