Уточнить поиск
Результаты 1-10 из 371
Fluoride in weathered rock aquifers of southern India: managed aquifer recharge for mitigation Полный текст
2016
Brindha, Karthikeyan | Jagadeshan, G. | Kalpana, L. | Elango, L.
Climatic condition, geology, and geochemical processes in an area play a major role on groundwater quality. Impact of these on the fluoride content of groundwater was studied in three regions-part of Nalgonda district in Telangana, Pambar River basin, and Vaniyar River basin in Tamil Nadu, southern India, which experience semi-arid climate and are predominantly made of Precambrian rocks. High concentration of fluoride in groundwater above 4 mg/l was recorded. Human exposure dose for fluoride through groundwater was higher in Nalgonda than the other areas. With evaporation and rainfall being one of the major contributors for high fluoride apart from the weathering of fluoride rich minerals from rocks, the effect of increase in groundwater level on fluoride concentration was studied. This study reveals that groundwater in shallow environment of all three regions shows dilution effect due to rainfall recharge. Suitable managed aquifer recharge (MAR) methods can be adopted to dilute the fluoride rich groundwater in such regions which is explained with two case studies. However, in deep groundwater, increase in fluoride concentration with increase in groundwater level due to leaching of fluoride rich salts from the unsaturated zone was observed. Occurrence of fluoride above 1.5 mg/l was more in areas with deeper groundwater environment. Hence, practicing MAR in these regions will increase the fluoride content in groundwater and so physica or chemical treatment has to be adopted. This study brought out the fact that MAR cannot be practiced in all regions for dilution of ions in groundwater and that it is essential to analyze the fluctuation in groundwater level and the fluoride content before suggesting it as a suitable solution. Also, this study emphasizes that long-term monitoring of these factors is an important criterion for choosing the recharge areas.
Показать больше [+] Меньше [-]A double pre-selection method for natural background levels assessment in coastal groundwater bodies Полный текст
2022
Parrone, D. | Frollini, E. | Masciale, R. | Melita, M. | Passarella, G. | Preziosi, E. | Ghergo, S.
To evaluate the chemical status of groundwater bodies (GWB) according to the European Groundwater Directive, EU Member States are required to take into account natural background levels (NBLs) where needed. Assessing the NBLs in coastal GWBs is complicated by seawater intrusion which can be amplified by groundwater withdrawals increasing the salinization of such groundwater systems. This paper proposes a new method for the NBLs assessment in coastal areas based on a double pre-selection (PS) with fixed/dynamic limits. A case study in the Apulia region, located in southeastern Italy, is proposed, where we investigated four adjacent GWBs which form the complex karst, fractured Murgia aquifer, hosted in the Jurassic-Cretaceous carbonate platform, bounded by two seas and sustained by saltwater of marine intrusion in the coastal areas. Data related to 139 monitoring stations (MSs) of the regional groundwater monitoring network were used. The first PS, “static”, based on a fixed limit of anthropogenic contamination markers (NO₃ and NH₄), allows for the elimination of MSs impacted by human activities. On these, the second PS, “dynamic”, based on the identification of Cl anomalous values, allows for the identification of additional MSs affected by saline contamination. The residual dataset of MSs was used for the definition of NBLs of Cl, SO₄, F and B. A statistical comparison with historical Cl observations finally allowed us to verify if the salinity of current groundwater is representative of pristine conditions. The calculated NBLs of salinity parameters are higher for the two coastal GWBs, with chloride values between 0.8 and 2 mg/L. Conversely, fluorides always show very low NBLs. The double PS approach seems more effective for NBLs calculation in coastal aquifers affected by saline contamination, where the use of a fixed Cl limit fails. It may respond to the international needs for a standardized procedure for NBL assessment.
Показать больше [+] Меньше [-]Efficiency of the bank filtration technique for diclofenac removal: A review Полный текст
2022
de Carvalho Filho, José Adson Andrade | da Cruz, Hedmun Matias | Fernandes, Bruna Soares | Motteran, Fabrício | de Paiva, Anderson Luiz Ribeiro | Cabral, Jaime J. P. (Jaime Joaquim Pereira)
Bank filtration (BF) has been employed for more than a century for the production of water with a better quality, and it has been showing satisfactory results in diclofenac attenuation. Considered the most administered analgesic in the world, diclofenac has been frequently detected in water bodies. Besides being persistent in the environment, this compound is not completely removed by the conventional water treatments, drinking water treatment plants (DWTPs) and wastewater treatment plant (WWTPs). BF has a high complexity, whose efficiency depends on the characteristics of the observed pollutant and on the environment where the system in installed, which is why this is a topic that has been constantly studied. Nevertheless, studies present the behavior of diclofenac during the BF process. In this context, this research performed the evaluation of the factors and the biogeochemical processes that influence the efficiency of the BF technique in diclofenac removal. The aerobic conditions, higher temperatures, microbial biomass density, hydrogen potential close to neutrality and sediments with heterogeneous fractions are considered the ideal conditions in the aquifer for diclofenac removal. Nonetheless, there is no consensus on which of these factors has the greatest contribution on the mechanism of attenuation during BF. Studies with columns in laboratory and modeling affirm that the highest degradation rates occur in the first centimeters (5–50 cm) of the passage of water through the porous medium, in the environment known as hyporheic zone, where intense biogeochemical activities occur. Research has shown 100% removal efficiency for diclofenac persistent to compounds not removed during the BF process. However, half of the studies had removal efficiency that ranged between 80 and 100%. Therefore, the performance of more in-depth studies on the degradation and mobility of this compound becomes necessary for a better understanding of the conditions and biogeochemical processes which act in its attenuation.
Показать больше [+] Меньше [-]Release of soil colloids during flow interruption increases the pore-water PFAS concentration in saturated soil Полный текст
2021
Borthakur, Annesh | Cranmer, Brian K. | Dooley, Gregory P. | Blotevogel, Jens | Mahendra, Shaily | Mohanty, Sanjay K.
Groundwater flow through aquifer soils or packed bed systems can fluctuate for various reasons, which could affect the concentration of natural colloids and per- and polyfluoroalkyl substances (PFAS) in the pore water. In such cases, PFAS concentration could either decrease due to matrix diffusion of PFAS or increase by the detachment of colloids carrying PFAS. Yet, the effect of flow fluctuation on PFAS transport or release in porous media has not been examined. To examine the relative importance of either process, we interrupted the flow during an injection of groundwater spiked with perfluorobutanoic acid (PFBA), perfluorooctanoic acid (PFOA), and bromide as conservative tracer through clay-rich soil, so that diffusive transport would be prominent during flow interruption. After flow interruption, the PFAS concentration did not decrease indicating an insignificant contribution of matrix diffusion. The concentration increased, potentially due to enhanced release of colloid-associated PFAS. Analysis of samples before and after flow interruption by particle size analysis and SEM confirmed an increase in soil colloid concentration after the flow interruption. XRD analysis of soil and the colloids proved that PFAS were associated with specific sites of the colloids. Due to a higher affinity of PFOA to soil colloids, the total PFOA concentration in the effluent samples increased more than PFBA after the flow interruption process. The results indicate that colloids may have a disproportionally higher role in the transport of PFAS in conditions that release colloids from porous media. Thus, fluctuations in groundwater flow can increase this colloid facilitated mobility of PFAS.
Показать больше [+] Меньше [-]An in-situ bio-remediation of nitrobenzene in stimulated aquifer using emulsified vegetable oil Полный текст
2021
Widespread nitrobenzene (NB) contamination in groundwater requires an economical and effective remediation technology. In situ microbial reactive zone enhanced by injecting emulsified vegetable oil (EVO) is an effective method for remediating NB-contaminated groundwater, which can be reduced to aniline (AN) effectively in the reactive zone. However, the bio-mechanism of NB remediation in a real contaminated site is still unclear. Thus, a 3-D tank was established to conduct a pilot-scale experiment and the bacterial communities in the tank were analyzed by 16S rDNA high-throughput sequencing. The results suggested that the injection of EVO can stimulate some certain microorganisms to grow, and reduce NB though biological and biochemical processes. There were three degradation pathways of NB: (1) direct oxidation by Pseudomonas; (2) direct mineralization by Clostridium sensu stricto; and (3) coupled reduction of NB through microbial dissimilatory iron reduction by Geobacter and Arthrobacter. Among these pathways, the coupled reduction process is the main degradation pathway.
Показать больше [+] Меньше [-]Emerging organic compounds in European groundwater Полный текст
2021
Bunting, S.Y. | Lapworth, D.J. | Crane, E.J. | Grima-Olmedo, J. | Koroša, A. | Kuczyńska, A. | Mali, N. | Rosenqvist, L. | van Vliet, M.E. | Togola, A. | López, B.
In Europe, emerging organic compounds (EOCs) in groundwater is a growing research area. Prioritisation for monitoring EOCs in Europe was formalised in 2019 through the development of the first voluntary groundwater watch list (GWWL). Despite this, groundwater occurrence data in the peer reviewed literature for Europe has not been reviewed to date. Questions surrounding the effect, toxicity, movement in the subsurface and unsaturated zone make the process of regulating EOC use difficult. The aim in Europe is to develop a unified strategy for the classification, and prioritisation of EOCs to be monitored in groundwater. This paper compiles evidence from the recent published studies from across Europe, since 2012, when the last major literature global review of EOCs in groundwater took place. A total of 39 studies were identified for review based on specific selection criteria (geography, publication date, sample size>10, inclusion of EOCs data). Data on specific compounds, and associated meta-data, are compiled and reviewed. The two most frequently detected EOCs, carbamazepine and caffeine, occurred in groundwater at concentrations of up to 2.3 and 14.8 μg/L, respectively.The most frequently reported category of compounds were ‘Pharmaceuticals’; a highly studied group with 135 compounds identified within 31 of the 39 studies. In Europe, the majority of reviewed studies (23) were at a regional scale, looking specifically at EOCs in a specific city or aquifer. The use of analytical methods is not uniform across Europe, and this inevitably influences the current assessment of EOCs in groundwater. A correlation between the number of compounds analysed for, and the number detected in groundwater highlights the need for further studies, especially larger-scale studies throughout Europe. For the development of EU and national regulation, further work is required to understand the occurrence and impacts of EOCs in groundwater throughout Europe and elsewhere.
Показать больше [+] Меньше [-]Elements in surface and well water from the central North China Plain: Enrichment patterns, origins, and health risk assessment Полный текст
2020
Long, Jie | Luo, Kunli
The principal aim of this study was to understand the enrichment patterns of elements in water from typical coal mine and irrigation areas. For this study, samples of surface water, shallow water, and deep water were collected from Handan, Jining, and Heze cities and their surrounding areas in the central North China Plain. The results showed that the hydrochemical characteristics were dominated by Ca–Mg–Cl and Ca–HCO₃. Elements in the studied surface water, including strontium, iron and boron, were anomalously enriched at levels more than 654, 294 and 134 times their global river water averages, respectively. The concentrations of elements in the studied area were influenced by both natural processes and anthropogenic sources, but the dominant origins of the anomalous enriched elements were bedrock weathering and soil leaching. The deep well water quality in the Handan coal mining area was good, while the poor-quality water samples in the study area were mainly distributed in the alluvial plain, which is characterized by Neogene-Quaternary sediments and aquifers. The measured hazard quotient and hazard index values indicate that the arsenic and nickel in the studied samples could pose a noncarcinogenic risk to the health of local residents, especially children. The leading source of the high arsenic levels is influenced by natural process. Monitoring plans for arsenic, iron, manganese, nitrate and other potentially harmful elements in surface water and groundwater and effective health education on pollution by these elements are essential.
Показать больше [+] Меньше [-]Bacteriological and geochemical features of the groundwater resources: Kettara abandoned mine (Morocco) Полный текст
2019
Zouhri, Lahcen | El Amari, Khalid | Marier, David | Benkaddour, Abdelfattah | Hibti, Mohamed
Waste water of the Kettara village, as well as the abandoned tailings, constitute a potential environmental issue with direct consequences on air, soil, water resources qualities and, on human health. In this paper, experimental investigations examine the environmental impact which is induced by the wastewater, mine tailings and the lithological factors of rocks. This multidisciplinary research allows to i) understand the transfer of the Metallic Trace Elements (selenium, arsenic, nickel and zinc) and sulfate ions in the fractured shales media, ii) to assess the water potability by using the microbiological analysis. The microbiological results reveal the domestic impact by the presence of several kinds of bacteria in the groundwater resources: E. coli, Fecal coliforms, Total coliforms, Enterococci, Mesophilic Aerobic Flora, Sulphite-reducing bacteria and Salmonella.Selenium, arsenic and the bacteriological contamination of the groundwater could be explained by five kinds of factors: i) the geological formations and the nature of the hydrogeological system (unconfined layer), ii) the groundwater flow, the hydraulic relation between the hydrogeological wells and, the fractures network in the shale aquifer. The piezometric map allows to highlight the groundwater flow from the North-East to North-West and to the South-West, the drainage axis towards the P21 well and the presence of the dividing axis in the contaminated zone by the arsenic, iii) the absence of the unhealthy habitats with permeable traditional septic tanks in the village; iv) the transfer of the spreading animal excrements from the soil to groundwater and, v) the migration of the wastewater towards downstream of the groundwater flow. The presence of the reed beds could explain the reduction of bacteria in the hydrogeological wells of the study area.
Показать больше [+] Меньше [-]Degradation of tetra- and trichloroethylene under iron reducing conditions by Acidimicrobiaceae sp. A6 Полный текст
2019
Ge, Jinyi | Huang, Shan | Han, Il | Jaffe, Peter R.
The degradation of trichloroethylene (TCE) and tetrachloroethylene (PCE), in incubations where ammonium was oxidized while iron was being reduced indicates that these compounds can be degraded during the Feammox process by Acidimicrobiaceae sp. A6 (ATCC, PTA-122488). None of these compounds were degraded in incubations to which no ammonium was added, indicating that they were degraded during the oxidation of ammonium. Degradation of TCE and PCE (ranging between 32% and 55%) was observed in incubations with a pure Acidimicrobiaceae sp. A6 culture as well as an Acidimicrobiaceae sp. A6 enrichment culture over a 2-week period. In addition to these batch studies, a column study, with a 5-h hydraulic residence time, was conducted contrasting the degradation of TCE in iron-rich soil columns that were either seeded with a pure or an enrichment culture of Acidimicrobiaceae sp. A6 to achieve ammonium oxidation under iron reduction, and a control column that was initially not seeded and later seeded with Geobacter metallireducens. While there was ∼22% TCE removal in the columns seeded with Acidimicrobiaceae sp. A6, there was no removal in the unseeded column or the column seeded with G. metallireducens which was being operated under iron reducing conditions. Feammox is an anoxic process that requires acidic conditions. Hence, these results indicate that this process might be harnessed where other bioremediation strategies are difficult, since many require neutral or alkaline conditions, and supplying ammonium to an anoxic aquifer is relatively easy, since there are not many processes that will oxidize ammonium in the absence of dissolved oxygen.
Показать больше [+] Меньше [-]Evaluation of groundwater contamination in Chandigarh: Source identification and health risk assessment Полный текст
2019
Ravindra, Khaiwal | Thind, Parteek Singh | Mor, Sahil | Singh, Tanbir | Mor, Suman
The major objective of the current study is to estimate the groundwater quality and identify the likely sources of contamination in Chandigarh, India. Total 80 groundwater samples were collected from different locations and at various depths in the study area. Further, physcio-chemical analysis was done to estimate pH, electrical conductivity (EC), total dissolved solids, total hardness (TH), total alkalinity (TA), Na+, K+, Cl−, SO42−, PO43− and NO3−. The groundwater samples collected from shallow water sources were observed to contain higher amount of dissolved salts. EC, TA, Cl−, TH, Na+, and K+ were found relatively higher in the shallow aquifer (<150 ft). Based on the location of pollution sources at the surface and consecutive geo-statistical distribution of physicochemical characteristics, this study suggests that non-scientific disposal of municipal solid waste,dumping of industrial waste and agricultural activities, in the nearby areas, could lead to deterioration of groundwater of shallow aquifer. These observations were also confirmed using various water quality indices and outcomes of multivariate modeling, including principal component analysis. Health risk assessment for nitrates indicated that 29 groundwater samples pose non-carcinogenic health risk for children due to dermal and oral exposure. Hence, there is a need to establish a system for regularly assessing the groundwater quality so as to minimize public health risks.
Показать больше [+] Меньше [-]