Уточнить поиск
Результаты 1-10 из 258
Characterization of antimicrobial resistance genes and virulence factor genes in an Arctic permafrost region revealed by metagenomics Полный текст
2022
Kim, HeeSoo | Kim, Mincheol | Kim, Sanghee | Lee, Yung Mi | Shin, Seung Chul
Antimicrobial resistance genes (ARGs) and virulence factor genes (VFGs) constitute a serious threat to public health, and climate change has been predicted to affect the increase in bacterial pathogens harboring ARGs and VFGs. However, studies on bacterial pathogens and their ARGs and VFGs in permafrost region have received limited attention. In this study, a metagenomic approach was applied to a comprehensive survey to detect potential ARGs, VFGs, and pathogenic antibiotic resistant bacteria (PARB) carrying both ARGs and VFGs in the active layer and permafrost. Overall, 70 unique ARGs against 18 antimicrobial drug classes and 599 VFGs classified as 38 virulence factors were detected in the Arctic permafrost region. Eight genes with mobile genetic elements (MGEs) carrying ARGs were identified; most MGEs were classified as phages. In the metagenome-assembled genomes, the presence of 15 PARB was confirmed. The soil profile showed that the transcripts per million (TPM) values of ARGs and VFGs in the sub-soil horizon were significantly lower than those in the top soil horizon. Based on the TPM value of each gene, major ARGs, VFGs, and these genes in PARB from the Arctic permafrost region were identified and their distribution was confirmed. The major host bacteria for ARGs and VFGs and PARB were identified. A comparison of the percentage identity distribution of ARGs and VFGs to reference databases indicated that ARGs and VFGs in the Arctic soils differ from previously identified genes. Our results may help understand the characteristics and distribution of ARGs, VFGs, and these genes in PARB in the Arctic permafrost region. This findings suggest that the Arctic permafrost region may serve as potential reservoirs for ARGs, VFGs, and PARB. These genes could pose a new threat to human health if they are released by permafrost thawing owing to global warming and propagate to other regions.
Показать больше [+] Меньше [-]New and legacy persistent organic pollutants (POPs) in breeding seabirds from the East Antarctic Полный текст
2022
Lewis, Phoebe J. | Lashko, Anna | Chiaradia, Andre | Allinson, Graeme | Shimeta, Jeff | Emmerson, Louise
Persistent organic pollutants (POPs) are pervasive and a significant threat to the environment worldwide. Yet, reports of POP levels in Antarctic seabirds based on blood are scarce, resulting in significant geographical gaps. Blood concentrations offer a snapshot of contamination within live populations, and have been used widely for Arctic and Northern Hemisphere seabird species but less so in Antarctica. This paper presents levels of legacy POPs (polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polybrominated diphenyl ethers (PBDEs)) and novel brominated flame retardants (NBFRs) in the blood of five Antarctic seabird species breeding within Prydz Bay, East Antarctica. Legacy PCBs and OCPs were detected in all species sampled, with Adélie penguins showing comparatively high ∑PCB levels (61.1 ± 87.6 ng/g wet weight (ww)) compared to the four species of flying seabirds except the snow petrel (22.5 ± 15.5 ng/g ww), highlighting that legacy POPs are still present within Antarctic wildlife despite decades-long bans. Both PBDEs and NBFRs were detected in trace levels for all species and hexabromobenzene (HBB) was quantified in cape petrels (0.3 ± 0.2 ng/g ww) and snow petrels (0.2 ± 0.1 ng/g ww), comparable to concentrations found in Arctic seabirds. These results fill a significant data gap within the Antarctic region for POPs studies, representing a crucial step forward assessing the fate and impact of legacy POPs contamination in the Antarctic environment.
Показать больше [+] Меньше [-]Diet influences on growth and mercury concentrations of two salmonid species from lakes in the eastern Canadian Arctic Полный текст
2021
Chételat, John | Shao, Yueting | Richardson, Murray C. | MacMillan, Gwyneth A. | Amyot, Marc | Drevnick, Paul E. | Gilla, Haradīpa | Köck, Günter | Muir, Derek C.G.
Diet, age, and growth rate influences on fish mercury concentrations were investigated for Arctic char (Salvelinus alpinus) and brook trout (Salvelinus fontinalis) in lakes of the eastern Canadian Arctic. We hypothesized that faster-growing fish have lower mercury concentrations because of growth dilution, a process whereby more efficient growth dilutes a fish’s mercury burden. Using datasets of 57 brook trout and 133 Arctic char, linear regression modelling showed fish age and diet indices were the dominant explanatory variables of muscle mercury concentrations for both species. Faster-growing fish (based on length-at-age) fed at a higher trophic position, and as a result, their mercury concentrations were not lower than slower-growing fish. Muscle RNA/DNA ratios were used as a physiological indicator of short-term growth rate (days to weeks). Slower growth of Arctic char, inferred from RNA/DNA ratios, was found in winter versus summer and in polar desert versus tundra lakes, but RNA/DNA ratio was (at best) a weak predictor of fish mercury concentration. Net effects of diet and age on mercury concentration were greater than any potential offset by biomass dilution in faster-growing fish. In these resource-poor Arctic lakes, faster growth was associated with feeding at a higher trophic position, likely due to greater caloric (and mercury) intake, rather than growth efficiency.
Показать больше [+] Меньше [-]Polycyclic aromatic compounds in the Canadian Environment: Aquatic and terrestrial environments Полный текст
2021
Marvin, Christopher H. | Berthiaume, Alicia | Burniston, Deborah A. | Chibwe, Leah | Dove, Alice | Evans, Marlene | Hewitt, L Mark | Hodson, Peter V. | Muir, Derek C.G. | Parrott, Joanne | Thomas, Philippe J. | Tomy, Gregg T.
Polycyclic aromatic compounds (PACs) are ubiquitous across environmental media in Canada, including surface water, soil, sediment and snowpack. Information is presented according to pan-Canadian sources, and key geographical areas including the Great Lakes, the Alberta Oil Sands Region (AOSR) and the Canadian Arctic. Significant PAC releases result from exploitation of fossil fuels containing naturally-derived PACs, with anthropogenic sources related to production, upgrading and transport which also release alkylated PACs. Continued expansion of the oil and gas industry indicates contamination by PACs may increase. Monitoring networks should be expanded, and include petrogenic PACs in their analytical schema, particularly near fuel transportation routes. National-scale roll-ups of emission budgets may not expose important details for localized areas, and on local scales emissions can be substantial without significantly contributing to total Canadian emissions. Burning organic matter produces mainly parent or pyrogenic PACs, with forest fires and coal combustion to produce iron and steel being major sources of pyrogenic PACs in Canada. Another major source is the use of carbon electrodes at aluminum smelters in British Columbia and Quebec. Temporal trends in PAC levels across the Great Lakes basin have remained relatively consistent over the past four decades. Management actions to reduce PAC loadings have been countered by increased urbanization, vehicular emissions and areas of impervious surfaces. Major cities within the Great Lakes watershed act as diffuse sources of PACs, and result in coronas of contamination emanating from urban centres, highlighting the need for non-point source controls to reduce loadings.
Показать больше [+] Меньше [-]Effect of oil pollution on the ecological condition of soils and bottom sediments of the arctic region (Yakutia) Полный текст
2021
Lifshits, Sara | Glyaznetsova, Yuliya | Erofeevskaya, Larisa | Chalaya, Olga | Zueva, Iraida
Oil and petroleum products are known to be among the most widespread soil pollutants. The risk of emergencies is sure to increase greatly in conditions of abnormally low temperatures. Oil and oil products are not only toxic to the environment, but can also have a negative impact on the state of the permafrost zone, accelerating the processes of permafrost degradation. The goal of the research was to study the soils and bottom sediments for oil pollution in the Arctic region of Yakutia. The research was carried out with using the complex of geochemical and microbiological methods of analysis. It had shown that at present oil pollution was mainly concentrated on the objects bearing a high technogenic load. However, some migration of hydrocarbons was observed with melt, seasonal melt and rainwaters, as a result of which the natural background of the nearby territories became technogenic character. In the Arctic conditions for the first time according to the obtained data on geochemical and microbiological studies oxidative destruction of oil pollutants in soil occurred mainly under the influence of physic and chemical environmental factors, not by microbial oxidation. Sluggish processes of mineralization of organic residues and the transformation of oil pollutants by the type of putrefaction led to the colonization of oil-polluted soils of the Arctic with putrefying and pathogenic microorganisms. The purpose of further research will be studying the possibility of intensification of soil remediation processes of technologically disturbed soils at abnormally low temperatures.
Показать больше [+] Меньше [-]The driving factors of mercury storage in the Tibetan grassland soils underlain by permafrost Полный текст
2020
Gu, Jing | Pang, Qiaotong | Ding, Jinzhi | Yin, Runsheng | Yang, Yuanhe | Zhang, Yanxu
Soils, especially permafrost in the Arctic and the Tibetan Plateau, are one of the largest reservoirs of mercury (Hg) in the global environment. The Hg concentration in the grassland soils over the Tibetan Plateau and its driving factors have been less studied. This study analyzes soil total mercury (STHg) concentrations and its vertical distribution in grassland soil samples collected from the Tibetan Plateau. We adopt a nested-grid high-resolution GEOS-Chem model to simulate atmospheric Hg deposition. The relationship between STHg and soil organic carbon (SOC), as well as atmospheric deposition, are explored. Our results show that the STHg concentrations in the Tibetan Plateau are 19.8 ± 12.2 ng/g. The concentrations are higher in the south and lower in the north in the Tibetan Plateau, consistent with the previous results. Our model shows that the average deposition flux of Hg is 3.3 μg m⁻² yr⁻¹, with 57% contributed by dry deposition of elemental mercury (Hg⁰), followed by dry (19%) and wet (24%) deposition of divalent mercury. We calculate the Hg to carbon ratio (RHg:C) as 5.6 ± 6.5 μg Hg/g C, and the estimated STHg is 86.6 ± 101.2 Gg in alpine grasslands in the Tibetan Plateau. We find a positive relationship between STHg and SOC in the Tibetan Plateau (r² = 0.36) and a similar positive relationship between STHg and atmospheric total Hg deposition (r² = 0.24). A multiple linear regression involving both variables better model the observed STHg (r² = 0.42). We conclude that SOC and atmospheric deposition influence STHg simultaneously in this region. The data provides information to quantify the size of the soil Hg pool in the Tibetan Plateau further, which has important implications for the Hg cycles in the permafrost regions as well as on the global scale.
Показать больше [+] Меньше [-]Ny-Ålesund-oriented organic pollutants in sewage effluent and receiving seawater in the Arctic region of Kongsfjorden Полный текст
2020
Choi, Younghun | Kim, Kitae | Kim, Deokwon | Moon, Hyo-bang | Jeon, Junho
Ny-Ålesund, one of four permanent settlements on Spitsbergen in Svalbard, is a research town that includes scientific institutes from many countries. Because of daily-used chemicals (e.g., pharmaceutical and personal care products (PPCPs)) used by residents in the area, generated sewage is considered as a point source in the Kongsfjorden. The aim of the present study was to identify and quantify organic pollutants in the effluent and along the shoreline and offshore via target, suspect, and non-target screening using liquid chromatography–high-resolution mass spectrometry. We tentatively identified 30 compounds using the suspect and non-target screening methods in effluent samples from our first visit to the settlement in 2016. Among these, 3 were false positive, 24 were confirmed, and the 3 remaining compounds were not confirmed because of a lack of reference standards. Of the confirmed, 21 were quantifiable and considered target compounds for the 2nd year study. The quantified compounds in the effluent samples in 2017 totaled 17, including PPCPs, pesticides, perfluorinated compounds, and their metabolites. Some of the compounds, such as caffeine, paraxanthine/theophylline, acetaminophen, cetirizine, diethyl toluamide (DEET), and icaridin, were also detected in the receiving seawater. The concentration range was from 4 to 280,000 ng/L in the effluent and 2–98 ng/L in the seawater. Other 24 compounds were tentatively identified in the second-year effluent samples. Five were further confirmed using reference standards. Prioritization was performed on the 47 substances screened in Ny-Ålesund using the exposure and toxicity index. As the result, the top seven substances of concern present were perfluorooctanesulfonic acid (PFOS), triphenyl phosphate (TPHP), irbesartan, DEET, acetaminophen, caffeine, and paraxanthine/theophylline. As the effluent was identified as a source of the concerned organic pollutants, an emission reduction strategy should take place for protection of Arctic Fjorden environment.
Показать больше [+] Меньше [-]Occurrence and distribution of organophosphate esters in the air and soils of Ny-Ålesund and London Island, Svalbard, Arctic Полный текст
2020
Han, Xu | Hao, Yanfen | Li, Yingming | Yang, Ruiqiang | Wang, Pu | Zhang, Gaoxin | Zhang, Qinghua | Jiang, Guibin
The levels of eight organophosphate esters (OPEs) were analyzed in air and soil samples collected at Ny-Ålesund and London Island, Svalbard during the Chinese Scientific Research Expedition to the Arctic during 2014–2015. The concentrations of total OPEs (∑OPEs) ranged from 357 pg/m³ to 852 pg/m³ in the air and from 1.33 ng/g to 17.5 ng/g dry weight (dw) in the soils. Non-Cl OPEs accounted for 56 ± 13% and 62 ± 16% of ∑OPEs for the air and soil, respectively. Tris(2-chloroethyl) phosphate (TCEP) was the dominant compound in the air, with an average concentration of 180 ± 122 pg/m³. Triphenyl phosphate, tri(1-chloro-2-propyl) phosphate, and TCEP were the most abundant OPEs in the soils, with mean values of 1.77, 2.13, and 1.02 ng/g dw, respectively. Compared with the levels of polybrominated diphenyl ethers found in Arctic regions in previous studies, OPEs showed significantly higher concentrations, thereby indicating the large production and wide usage of OPEs globally. In addition, the fugacity fraction results indicated that net deposition from air to soil was dominated in the area. Overall, the occurrence and distribution of OPEs in the air and soils in the Arctic region indicated that OPEs can undergo long-range atmospheric transport and accumulate in remote regions.
Показать больше [+] Меньше [-]Recent findings of halogenated flame retardants (HFR) in the German and Polar environment Полный текст
2019
Dreyer, Annekatrin | Neugebauer, Frank | Lohmann, Nina | Rüdel, Heinz | Teubner, Diana | Grotti, Marco | Rauert, Caren | Koschorreck, Jan
To get an overview about distribution, levels and temporal trends of polybrominated diphenyl ethers (PBDE) and halogenated flame retardants (HFR) of emerging concern, different types of environmental samples archived in the German Environment Specimen Bank as well as fish filet samples from the Arctic (n = 13) and Antarctica (n = 5) were analysed for 43 substances (24 PBDE, 19 HFR) using a multi-column clean-up and GC-API-MS/MS or GC-MS. Sample types were herring gull egg (n = 3), blue mussel (n = 3) and eelpout filet (n = 3) from the German North- and Baltic Sea, bream filet (n = 7), zebra mussel (n = 6) and suspended particulate matter (SPM, n = 7) from German freshwater ecosystems as well as tree leaves (n = 9)/shoots (n = 10), soil (n = 4), earthworm (n = 4) and deer liver (n = 7) as representatives of German terrestrial ecosystems. PBDE and emerging HFR were present in each investigated matrices from Germany and Polar regions showing their widespread distribution. The presence in Arctic and Antarctic fish samples confirms their long-range transport potential. Average concentrations of total emerging HFR were highest in SPM (26 ng g⁻¹ dry weight (dw)), zebra mussel (10 ng g⁻¹ dw) and herring gull egg (2.6 ng g⁻¹ dw). Lowest levels were measured in fish filet samples from Antarctica (0.02 ng g⁻¹ dw). Average total PBDE concentrations were highest in bream filet (154 ng g⁻¹), herring gull egg (61 ng g⁻¹ dw), SPM (21 ng g⁻¹ dw), and zebra mussel 18 (ng g⁻¹) and lowest in deer liver (0.04 ng g⁻¹ dw). The patterns of non-fauna terrestrial samples (leaves, shoots, soil) as well as SPM were dominated by DBDPE and BDE209. Elevated proportions of DPTE and in most cases the absence of DBDPE characterized all fauna samples with the exception of Polar samples. Overall, emerging HFR appeared to be less bioaccumulative than PBDE. Temporal trends were generally decreasing with few exceptions such as DBDPE.
Показать больше [+] Меньше [-]Abundance and distribution of microplastics in the surface sediments from the northern Bering and Chukchi Seas Полный текст
2019
Mu, Jingli | Qu, Ling | Jin, Fei | Zhang, Shoufeng | Fang, Chao | Ma, Xindong | Zhang, Weiwei | Huo, Cheng | Cong, Yi | Wang, Juying
Worldwide the seafloor has been recognized as a major sink for microplastics. However, currently nothing is known about the sediment microplastic pollution in the North Pacific sector of the Arctic Ocean. Here, we present the first record of microplastic contamination in the surface sediment from the northern Bering and Chukchi Seas. The microplastics were extracted by the density separation method from collected samples. Each particle was identified using the microscopic Fourier transform infrared spectroscopy (μFTIR). The abundances of microplastics in sediments from all sites ranged from not detected (ND) to 68.78 items/kg dry weight (DW) of sediment. The highest level of microplastic contamination in the sediment was detected from the Chukchi Sea. A negative correlation between microplastic abundance and water depth was observed. Polypropylene (PP) accounted for the largest proportion (51.5%) of the identified microplastic particles, followed by polyethylene terephthalate (PET) (35.2%) and rayon (13.3%). Fibers constituted the most common shape of plastic particles. The range of polymer types, physical shapes and spatial distribution characteristics of the microplastics suggest that water masses from the Pacific and local coastal inputs are possible sources for the microplastics found in the study area. In overall, our results highlight the global distribution of these anthropogenic pollutants and the importance of management action to reduce marine debris worldwide.
Показать больше [+] Меньше [-]