Уточнить поиск
Результаты 1-5 из 5
A geochemical study of toxic metal translocation in an urban brownfield wetland
2012
Qian, Yu | Gallagher, Frank J. | Feng, Huan | Wu, Meiyin
Rhizosphere soil and dominant plant samples were collected at a brownfield site in New Jersey, USA, during summer 2005 to evaluate plant metal uptake from the contaminated soils. Metal concentrations varied from 4.25 to 978 μg g⁻¹ for As, 9.68–209 μg g⁻¹ for Cr, 23.9–1870 μg g⁻¹ for Cu, and 24.8–6502 μg g⁻¹ for Zn. A wide range of metal uptake efficiencies in the roots, stems and leaves was found in this study. Data showed that (1) Betula populifolia has high Zn, Cu and As accumulations in the root, and high concentrations of Cu and Zn in the stem and the leaf; (2) Rhus copallinum has high accumulation of Zn and Cr in the leaf and Cu in the stem; (3) Polygonum cuspidatum has high accumulations of Cu and As in the root; and (4) Artemisia vulgaris shows high Cu accumulation in the leaf and the stem.
Показать больше [+] Меньше [-]Relationship between concentration of rare earth elements in soil and their distribution in plants growing near a frequented road
2018
Mleczek, Patrycja | Borowiak, Klaudia | Budka, Anna | Niedzielski, Przemysław
Rare earth elements (REEs) are a group of elements whose concentration in numerous environmental matrices continues to increase; therefore, the use of biological methods for their removal from soil would seem to be a safe and reasonable approach. The aim of this study was to estimate the phytoextraction efficiency and distribution of light and heavy (LREEs and HREEs) rare earth elements by three herbaceous plant species: Artemisia vulgaris L., Taraxacum officinale F.H. Wigg. and Trifolium repens L., growing at a distance of 1, 10, and 25 m from the edge of a frequented road in Poland. The concentration of REEs in soil and plants was highly correlated (r > 0.9300), which indicates the high potential of the studied plant species to phytoextraction of these elements. The largest proportion of REEs was from the group of LREEs, whereas HREEs comprised only an inconsiderable portion of the REEs group. The dominant elements in the group of LREEs were Nd and Ce, while Er was dominant in the HREEs group. Differences in the amounts of these elements influenced the total concentration of LREEs, HREEs, and finally REEs and their quantities which decreased with distance from the road. According to the Friedman rank sum test, significant differences in REEs concentration, mainly between A. vulgaris L., and T. repens L. were observed for plants growing at all three distances from the road. The same relation between A. vulgaris L. and T. officinale was observed. The efficiency of LREEs and REEs phytoextraction in the whole biomass of plants growing at all distances from the road was A. vulgaris L. > T. officinale L. > T. repens L. For HREEs, the same relationship was recorded only for plants growing at the distance 1 m from the road. Bioconcentration factor (BCF) values for LREEs and HREEs were respectively higher and lower than 1 for all studied plant species regardless of the distance from the road. The studied herbaceous plant species were able to effectively phytoextract LREEs only (BCF > 1); therefore, these plants, which are commonly present near roads, could be a useful tool for removing this group of REEs from contaminated soil.
Показать больше [+] Меньше [-]Phytoextraction of Cadmium and Phytostabilisation with Mugwort (Artemisia vulgaris)
2011
Rebele, Franz | Lehmann, Cornelia
Artemisia vulgaris (mugwort) is a tall (1.0–2.0 m) high biomass perennial herb which accumulates considerable amounts of metals on contaminated sites. An outdoor pot experiment was conducted on a sandy, slightly alkaline soil of moderate fertility to study the uptake of cadmium and the distribution of Cd in plant tissues of A. vulgaris. Cadmium was applied as CdCl2 (a total of 1 l solution of 0, 10, 50 and 100 mg Cd l−1) to 12-l pots with a height of 25 cm. HNO3- and water-extractable concentrations of Cd were correlated with the applied Cd at 2-cm soil depth, but were not correlated at 20-cm soil depth, suggesting that Cd was either not mobile in the soil or completely taken up by mugwort roots. The Cd concentrations in different organs of A. vulgaris and litter increased with increasing soil contamination. Leaf/soil concentration ratios (BCFs) up to 65.93 ± 32.26 were observed. Translocation of Cd to the aboveground organs was very high. The leaf/root Cd concentration ratio (translocation factor) ranged from 2.07 ± 0.56 to 2.37 ± 1.31; however, there was no correlation of translocation factors to Cd enrichment, indicating similar translocation upon different soil contamination levels. In summary, A. vulgaris is tolerant to the metal concentrations accumulated, has a high metal accumulating biomass and accumulates Cd up to about 70% in the aboveground parts. Both a high phytoextraction potential and a high value for phytostabilisation would recommend mugwort for phytoremediation.
Показать больше [+] Меньше [-]Application of UV-visible absorption spectroscopy combined with two-dimensional correlation for insight into DOM fractions from native halophyte soils in a larger estuarine delta
2018
Wei, Huaibin | Yu, Huibin | Pan, Hongwei | Gao, Hongjie
UV-visible absorption spectroscopy combined with principal component analysis (PCA) and two-dimensional correlation (2D correlation) is used to trace components of dissolved organic matter (DOM) extracted from soils in a larger estuarine delta and to investigate spatial variations of DOM fractions. Soil samples of different depths were collected from native halophyte soils along a saline gradient, i.e., Suaeda salsa Comm. (SSC), Chenopodium album Comm. (CAC), Phragmites australis Comm. (PAC), and Artemisia selengensis Comm. (ASC). Molecular weights of DOM within the SSC soil profile were the lowest, followed by the CAC, PAC, and ASC soil profiles. Humification degree of DOM within the ASC soil profile was the highest, followed by the PAC, SSC, and CAC soil profiles. DOM within the soil profiles mainly contained phenolic, carboxylic, microbial products, and aromatic and alkyl groups through the PCA, which presented the significant differentiation among the four native halophyte soil profiles. The 2D UV correlation spectra of DOM within the SSC soil profile indicated that the variations of the phenolic groups were the largest, followed by the carboxylic groups, microbial products, and humified organic materials according to the band changing order of 285 → 365 → 425 → 520 nm. The 2D UV correlation spectra of DOM within the CAC soil profiles determined that the decreasing order of the variations was phenolic groups > carboxylic groups > microbial products according the band changing order of 285 → 365 → 425 nm. The 2D UV correlation spectra of DOM within the PAC soil profile proved that the variations of the phenolic groups were larger than those of the carboxylic groups according to the band changing order of 285 → 365 nm. The 2D UV correlation spectra of DOM within the ASC soil profile demonstrated that the variations of the phenolic groups were larger than those of the other DOM fractions according to the broad cross-peak at 285/365–700 nm.
Показать больше [+] Меньше [-]Phytoextraction of rare earth elements in herbaceous plant species growing close to roads
2017
Mikołajczak, Patrycja | Borowiak, Klaudia | Niedzielski, Przemysław
The aim of study was to determine the phytoextraction of rare earth elements (REEs) to roots, stems and leaves of five herbaceous plant species (Achillea millefolium L., Artemisia vulgaris L., Papaver rhoeas L., Taraxacum officinale AND Tripleurospermum inodorum), growing in four areas located in close proximity to a road with varied traffic intensity. Additionally, the relationship between road traffic intensity, REE concentration in soil and the content of these elements in plant organs was estimated. A. vulgaris and P. rhoeas were able to effectively transport REEs in their leaves, independently of area collection. The highest content of REEs was observed in P. rhoeas leaves and T. inodorum roots. Generally, HREEs were accumulated in P. rhoeas roots and leaves and also in the stems of T. inodorum and T. officinale, whereas LREEs were accumulated in T. inodorum roots and T. officinale stems. It is worth underlining that there was a clear relationship between road traffic intensity and REE, HREE and LREE concentration in soil. No positive correlation was found between the concentration of these elements in soil and their content in plants, with the exception of T. officinale. An effective transport of REEs from the root system to leaves was observed, what points to the possible ability of some of the tested plant species to remove REEs from soils near roads.
Показать больше [+] Меньше [-]