Уточнить поиск
Результаты 1-10 из 244
Assessment of Microplastic Pollution Sources in the Coastal Recreational Zones Полный текст
2023
Silakov, Mikhail | Sibirtsova, Elena | Temnykh, Alexandra
The authors propose a methodology for assessing the sources of microplastic pollution (particles 0.5-5 mm in size), which makes it possible to differentiate coastal recreational areas according to the degree of vulnerability to microplastic accumulation. The methodology takes into account the sources of microplastics coming to the beach directly from vacationers - factors of recreational activities, as well as the influence of factors of the adjacent territory: the type of adjacent territory, saturation with transport infrastructure, etc. An analysis of the results of monitoring the microplastic concentration in beach and bottom sediments of seven beaches of the Sevastopol region with varying degrees of anthropogenic load during 2018–2020, as well as an assessment of the sources of microplastic pollution on these beaches using the proposed methodology, made it possible to differentiate these coastal recreational areas according to the degree of vulnerability to accumulation of microplastic pollution. The most vulnerable are the beaches that are actively visited by tourists and located in close proximity to large blocks of apartment buildings and extensive transport infrastructure (Pesochniy and Omega). The beaches Konstantinovsky and Goryachka (placed close tothe thermal power station), located in the zone of active navigation of ships of various tonnage, are confined to areas of low and moderate pollution. The main stream of vacationers on them are local residents with a high turnover rate. The least vulnerable are the beaches with park areas: Uchkuevka, Solnechny and Zolotoy. The source of microplastic pollution on these beaches is mainly vacationers.
Показать больше [+] Меньше [-]Qualitative Analysis of Plastic Debris on Beaches of Brunei Darussalam Полный текст
2020
Qaisrani, Z. | Shams, S. | Guo, Z. R. | Mamun, A. A.
Plastic debris is one of the major environmental concerns for the coastal area of Brunei Darussalam. It reduces the aesthetic appeals of the beaches in the country. The current study investigates marine debris on six different beaches of Brunei Darussalam along the South China Sea. Plastic was found the most abundant among whole debris by number (90.02%) and by weight (39.12%). It was classified by size (micro (<5 mm), meso (5-20 mm), macro (21-100), and mega (>100 mm)), colour (transparent, coloured, white and black). Fourier Transform Infrared Spectroscopy (FT-IR) was used to investigate the types of plastics and additives present in it. Statistical analysis using Minitab 17 and Kruskal-Wallis test was performed for comparison of data at different study sites. All major types of plastics were found in different forms with varying quantities from which toxic chemicals may leach out during degradation. The highest abundance by the number of plastic debris was found on Muara beach with a mean value 74.428 n/m2 ± 34.33 n/m2, while the lowest abundance was found on Lumut beach 53 n/m2 ± 20.9 n/m2. The study shows beaches used for recreational facilities are likely to have more debris as compared to other beaches.
Показать больше [+] Меньше [-]Beaches of the Azores archipelago as transitory repositories for small plastic fragments floating in the North-East Atlantic Полный текст
2020
Pham, Christopher K. | Pereira, João M. | Frias, João P.G.L. | Ríos, Noelia | Carriço, Rita | Juliano, Manuela | Rodríguez, Yasmina
Plastic pollution is among the most pervasive stressors currently influencing the marine environment and affecting even the most remote areas. To date, there are still fundamental gaps in our understanding of the major pathways and fate of plastic debris in the oceans. Here we show that oceanic insular environments are important transitory repositories of small plastic items floating in the open ocean. Monthly monitoring of seven beaches over a three-year period demonstrate that beaches of the Azores islands with particular characteristics can capture significant quantities of fragments between 2 and 5 mm in length. The beach with the highest plastic loading rates was found to occasionally accumulate densities exceeding 15,000 fragments m⁻² on part of the backshore. However, a large portion of these fragments can be rapidly washed back into the marine environment. Detailed characterization of those plastic items revealed the typology and size distribution to be similar throughout the seven beaches and through the 33 months surveyed, suggesting a same and unique source. Our results show that these oceanic islands of the North-East Atlantic are under pressure of high quantities of fragmented plastic debris that probably entered the ocean many years ago.
Показать больше [+] Меньше [-]Mediterranean dirty edge: High level of meso and macroplastics pollution on the Turkish coast Полный текст
2019
Gündoğdu, Sedat | Çevik, Cem
It has become apparent that the coastal zones of aquatic environments are significantly affected by plastics pollution. The accumulation of marine plastic litter on beaches is an important problem due to their significant environmental impacts. In this study, 13 coastal areas in Iskenderun Bay (NE Levantine coast of Turkey) were sampled in May 2018 to investigate meso and macroplastic (0.5–123.4 cm) pollution. A total of 1424 meso and macroplastic items in five categories (filament, film, foam, fragments, and pellets) were collected. The average meso and macroplastic concentration was 12.2 ± 3.5 pcs m−2 (12.3 ± 3.5 g m−2) and the mean size for all stations was 3.7 ± 0.16 cm. The highest meso and macroplastic concentration was found in the Dörtyol location (46.2 ± 7.6 pcs m−2) and the lowest concentration was found in the Y. Lagün location (2.3 ± 0.2 pcs m−2). Plastics were separated into 14 different groups based on their origins. The most dominant type was hard plastics (broken, fragmented, and deformed) with 59.8% and greenhouse coverage films with 11%. Our results shows that regardless their source plastics fluxes at beaches from various pathways. Results of this study provide useful information for designing monitoring strategies and setting management goals.
Показать больше [+] Меньше [-]Scavenging as a pathway for plastic ingestion by marine animals Полный текст
2019
Andrades, Ryan | dos Santos, Roberta Aguiar | Martins, Agnaldo Silva | Teles, Davi | Santos, Robson Guimarães
Plastic pollution is prevalent worldwide and affects marine wildlife from urbanized beaches to pristine oceanic islands. However, the ecological basis and mechanisms that result in marine animal ingestion of plastic debris are still relatively unknown, despite recent advances. We investigated the relationship between scavenging behavior and plastic ingestion using green turtles, Chelonia mydas, as a model. Diet analysis of C. mydas showed that sea turtles engaging in scavenging behavior ingested significantly more plastic debris than individuals that did not engage in this foraging strategy. We argue that opportunistic scavenging behavior, an adaptive behavior in most marine ecosystems, may now pose a threat to a variety of marine animals due to the current widespread plastic pollution found in oceans.
Показать больше [+] Меньше [-]Widespread detection of a brominated flame retardant, hexabromocyclododecane, in expanded polystyrene marine debris and microplastics from South Korea and the Asia-Pacific coastal region Полный текст
2017
Jang, Mi | Shim, Won Joon | Han, Gi Myung | Rani, Manviri | Song, Young Kyoung | Hong, Sang Hee
The role of marine plastic debris and microplastics as a carrier of hazardous chemicals in the marine environment is an emerging issue. This study investigated expanded polystyrene (EPS, commonly known as styrofoam) debris, which is a common marine debris item worldwide, and its additive chemical, hexabromocyclododecane (HBCD). To obtain a better understanding of chemical dispersion via EPS pollution in the marine environment, intensive monitoring of HBCD levels in EPS debris and microplastics was conducted in South Korea, where EPS is the predominant marine debris originate mainly from fishing and aquaculture buoys. At the same time, EPS debris were collected from 12 other countries in the Asia-Pacific region, and HBCD concentrations were measured. HBCD was detected extensively in EPS buoy debris and EPS microplastics stranded along the Korean coasts, which might be related to the detection of a quantity of HBCD in non-flame-retardant EPS bead (raw material). The wide detection of the flame retardant in sea-floating buoys, and the recycling of high-HBCD-containing EPS waste inside large buoys highlight the need for proper guidelines for the production and use of EPS raw materials, and the recycling of EPS waste. HBCD was also abundantly detected in EPS debris collected from the Asia-Pacific coastal region, indicating that HBCD contamination via EPS debris is a common environmental issue worldwide. Suspected tsunami debris from Alaskan beaches indicated that EPS debris has the potential for long-range transport in the ocean, accompanying the movement of hazardous chemicals. The results of this study indicate that EPS debris can be a source of HBCD in marine environments and marine food web.
Показать больше [+] Меньше [-]Weathering and persistence of plastic in the marine environment: Lessons from LEGO Полный текст
2020
Turner, Andrew | Arnold, Rob | Williams, Tracey
The residence times of plastics in the oceans are unknown, largely because of the durability of the material and the relatively short (decadal) period of time over which plastic products have been manufactured. In this study, classic LEGO bricks constructed of acrylonitrile butadiene styrene (ABS) and washed up on beaches of southwest England have been subjected to X-ray fluorescence (XRF) analysis and the spectra and any other identifiers matched with unweathered blocks stored in collections or sets of known history. Relative to unweathered equivalents, weathered blocks exhibit varying degrees of yellowing, fracturing and fouling, and are of lower mass, average stud height and mechanical strength. These effects are attributed to photo-oxidative degradation and the actions of physical stress and abrasion while exposed to the marine environment. Infrared spectra indicate that the polymer remains largely intact on weathering but with photo-degradation of the polybutadiene phase of ABS, while quantification of XRF spectra reveals that pigments like cadmium sulphoselenide become more heterogeneously distributed in the matrix when in the environment. Using measured mass loss of paired (weathered versus unweathered) equivalents and the age of blocks obtained from storage we estimate residence times of between about 100 and 1300 years for this type and thickness of plastic, with variations reflecting differences in precise additive composition and modes of weathering.
Показать больше [+] Меньше [-]Toxicity assessment of pollutants sorbed on environmental sample microplastics collected on beaches: Part I-adverse effects on fish cell line Полный текст
2019
Pannetier, Pauline | Cachot, Jérôme | Clérandeau, Christelle | Faure, Florian | Van Arkel, Kim | de Alencastro, Luiz F. | Levasseur, Clément | Sciacca, Frédéric | Bourgeois, Jean-Pascal | Morin, Bénédicte
Microplastics (MPs), are tiny plastic fragments from 1 μm to 5 mm generally found in the aquatic environment which can be easily ingested by organisms and may cause chronic physical but also toxicological effects. Toxicological assays on fish cell lines are commonly used as an alternative tool to provide fast and reliable assessment of the toxic and ecotoxic properties of chemicals or mixtures. Rainbow trout liver cell line (RTLW-1) was used to evaluate the toxicity of pollutants sorbed to MPs sampled in sandy beaches from different islands around the world during the first Race for Water Odyssey in 2015. The collected MPs were analyzed for polymer composition and associated persistent organic pollutants: polycyclic aromatic hydrocarbons (PAHs), polychlorobiphenyls (PCBs) and dichlorodiphenyltrichloroethane (DDT). In addition, DMSO-extracts from virgin MPs, MPs artificially coated with B[a]P and environmental MPs were analyzed with different bioassays: MTT reduction assay (MTT), ethoxyresorufin-O-deethylase (EROD) assay and comet assay. Microplastics from sand beaches were dominated by polyethylene, followed by polypropylene fragments with variable proportions. Organic pollutants found on plastic from beach sampling was PAHs (2–71 ng g⁻¹). Samples from Bermuda (Somerset Long Bay) and Hawaii (Makapu'u) showed the highest concentration of PAHs and DDT respectively. No toxicity was observed for virgin microplastics. No cytotoxicity was observed on cells exposed to MP extract. However, EROD activity was induced and differently modulated depending on the MPs locations suggesting presence of different pollutants or additives in extract. DNA damage was observed after exposure to four microplastics samples on the six tested. Modification of EROD activity level and DNA damage rate highlight MPs extract toxicity on fish cell line.
Показать больше [+] Меньше [-]Application of Matrix Scoring Techniques to evaluate marine debris sources in the remote islands of the Azores Archipelago Полный текст
2019
Pieper, Catharina | Amaral-Zettler, Linda | Law, Kara Lavender | Loureiro, Clara Magalhães | Martins, Ana
Three-quarters of all marine debris (MD) consists of plastic, a reflection of their worldwide use, production and waste mismanagement. Data on MD distributions can improve our ability to effectively reduce debris that escapes onto shorelines and the ocean. In this study, the Matrix Scoring Technique (Marine Strategy Framework Directive Technical Group on Marine Litter) was applied as an approach to calculate the likelihood of single debris items originating from a series of potential sources. Factors considered were: identity and function of debris, beach location, influential activities, “mix” of debris found, presence of indicator items, and quantity of MD. The standing-stock (abundance and composition) of MD was investigated in two sandy beaches (Conceição and Porto Pim) of the Azores Archipelago (NE Atlantic) for the period 2012–2018. The results of this study show promise towards the implementation of a new classification method to determine beach debris sources in remote open-ocean areas.
Показать больше [+] Меньше [-]Mangrove forests as traps for marine litter Полный текст
2019
Martin, Cecilia | Almahasheer, Hanan | Duarte, Carlos M.
To verify weather mangroves act as sinks for marine litter, we surveyed through visual census 20 forests along the Red Sea and the Arabian Gulf, both in inhabited and remote locations. Anthropogenic debris items were counted and classified along transects, and the influence of main drivers of distribution were considered (i.e. land-based and ocean-based sources, density of the forest and properties of the object). We confirmed that distance to major maritime traffic routes significantly affects the density of anthropogenic debris in Red Sea mangrove forests, while this was independent of land-based activities. This suggests ocean-based activities combined with surface currents as major drivers of litter in this basin. Additionally, litter was more abundant where the mangrove density was higher, and object distribution through the mangrove stand often depended on their shape and dimension. We particularly show that pneumatophores act as a sieve retaining large plastic objects, leading to higher plastic mass estimates in mangroves compared to those of beaches previously surveyed in the Red Sea.
Показать больше [+] Меньше [-]