Уточнить поиск
Результаты 1-10 из 48
CircRNA-IGLL1/miR-15a/RNF43 axis mediates ammonia-induced autophagy in broilers jejunum via Wnt/β-catenin pathway Полный текст
2022
Wang, Yue | Wang, Shengchen | Jing, Hongyuan | Zhang, Tianyi | Song, Nuan | Xu, Shiwen
With the continued increase of global ammonia emission, the damage to human or animal caused by ammonia pollution has attracted wide attention. The noncoding RNAs have been reported to regulate a variety of biological processes under different environmental stimulation via ceRNA (competing endogenous RNA) networks. Autophagy is a hallmark of tissue damage from air pollution. However, the specific role of circular RNAs (circRNAs) in the injury of intestinal tissue caused by autophagy remains unclear. Here, we established 42-days old ammonia-exposed broiler models and observed that autophagy flux in broiler jejunum was activated under ammonia exposure. Meanwhile, a total of eight significantly dysregulated expressed circRNAs were obtained and a circRNAs-miRNAs-genes interaction networks were constructed by bioinformatics analysis. Furthermore, an axis named circRNA-IGLL1/miR-15a/RNF43 was predicted to participate in the excessive autophagy by targeting RNF43. The target relationship was proved by dual-luciferase reporter assay in vitro. Mechanistically, downregulated circRNA-IGLL1 could suppress the expression of RNF43 in ammonia-exposed jejunum and the Wnt/β-catenin pathway was activated. Inhibition of miR-15a reversed autophagy caused by downregulated circRNA-IGLL1. CircRNA-IGLL1 could competitively bind miR-15a to regulate RNF43 expression, thus modulating the occurrence of autophagy. Taken together, our results showed that circRNA-IGLL1/miR-15a/RNF43 axis is involved in ammonia-induced intestinal autophagy in broilers.
Показать больше [+] Меньше [-]Association between fine particulate matter and coronary heart disease: A miRNA microarray analysis Полный текст
2022
Guo, Jianhui | Xie, Xiaoxu | Wu, Jieyu | Yang, Le | Ruan, Qishuang | Xu, Xingyan | Wei, Donghong | Wen, Yeying | Wang, Tinggui | Hu, Yuduan | Lin, Yawen | Chen, Mingjun | Wu, Jiadong | Lin, Shaowei | Li, Huangyuan | Wu, Siying
Several studies have reported an association between residential surrounding particulate matter with an aerodynamic diameter ≤2.5 μm (PM₂.₅) and coronary heart disease (CHD). However, the underlying biological mechanism remains unclear. To fill this research gap, this study enrolled a residentially stable sample of 942 patients with CHD and 1723 controls. PM₂.₅ concentration was obtained from satellite-based annual global PM₂.₅ estimates for the period 1998–2019. MicroRNA microarray and pathway analysis of target genes was performed to elucidate the potential biological mechanism by which PM₂.₅ increases CHD risk. The results showed that individuals exposed to high PM₂.₅ concentrations had higher risks of CHD than those exposed to low PM₂.₅ concentrations (odds ratio = 1.22, 95% confidence interval: 1.00, 1.47 per 10 μg/m³ increase in PM₂.₅). Systolic blood pressure mediated 6.6% of the association between PM₂.₅ and CHD. PM₂.₅ and miR-4726-5p had an interaction effect on CHD development. Bioinformatic analysis demonstrated that miR-4726-5p may affect the occurrence of CHD by regulating the function of RhoA. Therefore, individuals in areas with high PM₂.₅ exposure and relative miR-4726-5p expression have a higher risk of CHD than their counterparts because of the interaction effect of PM₂.₅ and miR-4726-5p on blood pressure.
Показать больше [+] Меньше [-]Phenotypic and transcriptomic changes in the corneal epithelium following exposure to cigarette smoke Полный текст
2021
Jin, Mengyi | Wang, Yanzi | An, Xiaoya | Kang, Honghua | Wang, Yixin | Wang, Guoliang | Gao, Yang | Wu, Shuiping | Reinach, Peter S. | Liu, Zuguo | Xue, Yuhua | Li, Cheng
Cigarette smoke extract (CSE), a complex mixture of compounds, contributes to a range of eye diseases; however, the underlying pathophysiological responses to tobacco smoke remain ambiguous. The purpose of the present study was to evaluate the cigarette smoke-induced phenotypic and transcriptomic changes in the corneal epithelium with a view to elucidating the likely underlying mechanism. Accordingly, for the first time, we characterized the genome-wide effects of CSE on the corneal epithelium. The ocular surface of the mice in the experimental groups was exposed to CSE for 1 h per day for a period of one week, while mice in the control group were exposed to preservative-free artificial tears. Corneal fluorescein staining, in vivo confocal microscopy and scanning electron microscopy were performed to examine the corneal ultrastructure. Transcriptome sequencing and bioinformatics analysis were performed followed by RT-qPCR to validate gene expression changes. The results indicate that CSE exposure disrupted the structural integrity of the superficial epithelium, decreased the density of microvilli, and compromised the corneal epithelial barrier intactness. RNA-seq revealed 667 differentially expressed genes, and functional analysis highlighted the enhancement of several biological processes such as antioxidant activity and the response to oxidative stress. Moreover, the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis showed that glutathione metabolism and drug metabolism cytochrome P450 were the most relevant pathways contributing to the effects of CSE on the corneal epithelium. Protein–protein interaction (PPI) network analysis illustrated that GCLC, NQO1, and HMOX1 were the most relevant nodes. In conclusion, the present study indicates that CSE exposure induces changes in the phenotype and genotype of the corneal epithelium. The antioxidant response element is essential for counteracting the effects of cigarette smoke on this tissue layer. These results shed novel insights into how cigarette smoke damages this ocular surface.
Показать больше [+] Меньше [-]Critical window of exposure of CMIT/MIT with respect to developmental effects on zebrafish embryos: Multi-level endpoint and proteomics analysis Полный текст
2021
Chatterjee, Nivedita | Lee, Hyunho | Kim, Jiwan | Kim, Doeun | Lee, Sangkyu | Choi, Jinhee
Systemic toxicity, particularly, developmental defects of humidifier disinfectant chemicals that have caused lung injuries in Korean children, remains to be elucidated. This study evaluated the mechanisms of the adverse effects of 5-chloro-2-methyl-4-isothiazoline-3-one/2methyl-4-isothiazolin-3-one (CMIT/MIT), one of the main biocides of the Korean tragedy, and identify the most susceptible developmental stage when exposed in early life. To this end, the study was designed to analyze several endpoints (morphology, heart rate, behavior, global DNA methylation, gene expressions of DNA methyl-transferases (dnmts) and protein profiling) in exposed zebrafish (Danio rerio) embryos at various developmental stages. The results showed that CMIT/MIT exposure causes bent tail, pericardial edema, altered heart rates, global DNA hypermethylation and significant alterations in the locomotion behavior. Consistent with the morphological and physiological endpoints, proteomics profiling with bioinformatics analysis suggested that the suppression of cardiac muscle contractions and energy metabolism (oxidative phosphorylation) were possible pivotal underlying mechanisms of the CMIT/MIT mediated adverse effects. Briefly, multi-level endpoint analysis indicated the most susceptible window of exposure to be ≤ 6 hpf followed by ≤ 48 hpf for CMIT/MIT. These results could potentially be translated to a risk assessment of the developmental exposure effects to the humidifier disinfectants.
Показать больше [+] Меньше [-]Transcriptome analysis reveals that hydrogen sulfide exposure suppresses cell proliferation and induces apoptosis through ciR-PTPN23/miR-15a/E2F3 signaling in broiler thymus Полный текст
2021
Xueyuan, Hu | Qianru, Chi | Zhaoyi, Liu | Dayong, Tao | Yu, Wang | Yimei, Cong | Shu, Li
The immune organs, like thymus, are one of the targets of hydrogen sulfide (H₂S). Previously we reported that H₂S induced the differential expression of mRNAs that implicating apoptosis in thymus, however, the roles of noncoding RNAs (ncRNAs) in H₂S-induced thymus injury are still unknown. Pollution gases could alter the expression of ncRNAs, which have been shown to play important roles in many physiological and pathophysiological processes, including immune activity. This study revealed that H₂S exposure induced 9 differentially expressed circRNAs and 15 differentially expressed miRNAs in chicken thymus. Furthermore, the circRNA - miRNA - mRNA network was constructed. We discovered that circR-PTPN23 - miR-15a - E2F3 was involved in the cell cycle and apoptosis. Further, an in vitro H₂S exposure model was established using HD11 cell line and demonstrated that H₂S suppressed cell proliferation and induced apoptosis. Moreover, ciR-PTPN23 and E2F3 were downregulated, but miR-15a was upregulated in both the thymus and HD11 cell line after H₂S exposure. Bioinformatics analysis revealed that ciR-PTPN23 directly bound to miR-15a and that E2F3 was the target gene of miR-15a. Knocking down ciR-PTPN23 suppressed HD11 proliferation and caused G1 arrest and apoptosis, however, this phenomenon could be partially reversed by ciR-PTPN23 overexpression or miR-15a silencing. In summary, the ciR-PTPN23 - miR-15a - E2F3 axis was involved in H₂S-induced cell proliferation suppression and apoptosis.
Показать больше [+] Меньше [-]Antibiotic resistance genes are abundant and diverse in raw sewage used for urban agriculture in Africa and associated with urban population density Полный текст
2019
Bougnom, Blaise P. | McNally, Alan | Etoa, François-X. | Piddock, Laura JV.
A comparative study was conducted to (1) assess the potential of raw sewage used for urban agriculture to disseminate bacterial resistance in two cities of different size in Cameroon (Central Africa) and (2) compare the outcome with data obtained in Burkina Faso (West Africa). In each city, raw sewage samples were sampled from open-air canals in three neighbourhoods. After DNA extraction, the microbial population structure and function, presence of pathogens, antibiotic resistance genes and Enterobacteriaceae plasmids replicons were analysed using whole genome shotgun sequencing and bioinformatics. Forty-three pathogen-specific virulenc e factor genes were detected in the sewage. Eighteen different incompatibility groups of Enterobacteriaceae plasmid replicon types (ColE, A/C, B/O/K/Z, FIA, FIB, FIC, FII, H, I, N, P, Q, R, T, U, W, X, and Y) implicated in the spread of drug-resistance genes were present in the sewage samples. One hundred thirty-six antibiotic resistance genes commonly associated with MDR plasmid carriage were identified in both cities. Enterobacteriaceae plasmid replicons and ARGs found in Burkina Faso wastewaters were also present in Cameroon waters. The abundance of Enterobacteriaceae, plasmid replicons and antibiotic resistance genes was greater in Yaounde, the city with the greater population.In conclusion, the clinically relevant environmental resistome found in raw sewage used for urban agriculture is common in West and Central Africa. The size of the city impacts on the abundance of drug-resistant genes in the raw sewage while ESBL gene abundance is related to the prevalence of Enterobacteriaceae along with plasmid Enterobacteriaceae abundance associated to faecal pollution.
Показать больше [+] Меньше [-]Validation and application of quantitative PCR assays using host-specific Bacteroidales genetic markers for swine fecal pollution tracking Полный текст
2017
Fan, Lihua | Shuai, Jiangbing | Zeng, Ruoxue | Mo, Hongfei | Wang, Suhua | Zhang, Xiaofeng | He, Yongqiang
Genome fragment enrichment (GFE) method was applied to identify host-specific bacterial genetic markers that differ among different fecal metagenomes. To enrich for swine-specific DNA fragments, swine fecal DNA composite (n = 34) was challenged against a DNA composite consisting of cow, human, goat, sheep, chicken, duck and goose fecal DNA extracts (n = 83). Bioinformatic analyses of 384 non-redundant swine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode metabolism-associated, cellular processes and information storage and processing. After challenged against fecal DNA extracted from different animal sources, four sequences from the clone libraries targeting two Bacteroidales- (genes 1–38 and 3–53), a Clostridia- (gene 2–109) as well as a Bacilli-like sequence (gene 2–95), respectively, showed high specificity to swine feces based on PCR analysis. Host-specificity and host-sensitivity analysis confirmed that oligonucleotide primers and probes capable of annealing to select Bacteroidales-like sequences (1–38 and 3–53) exhibited high specificity (>90%) in quantitative PCR assays with 71 fecal DNAs from non-target animal sources. The two assays also demonstrated broad distributions of corresponding genetic markers (>94% positive) among 72 swine feces. After evaluation with environmental water samples from different areas, swine-targeted assays based on two Bacteroidales-like GFE sequences appear to be suitable quantitative tracing tools for swine fecal pollution.
Показать больше [+] Меньше [-]Integrative transcriptomic and protein analysis of human bronchial BEAS-2B exposed to seasonal urban particulate matter Полный текст
2016
Longhin, Eleonora | Capasso, Laura | Battaglia, Cristina | Proverbio, Maria Carla | Cosentino, Cristina | Cifola, Ingrid | Mangano, Eleonora | Camatini, Marina | Gualtieri, M. (Maurizio)
Exposure to particulate matter (PM) is associated with various health effects. Physico-chemical properties influence the toxicological impact of PM, nonetheless the mechanisms underlying PM-induced effects are not completely understood.Human bronchial epithelial cells were used to analyse the pathways activated after exposure to summer and winter urban PM and to identify possible markers of exposure.BEAS-2B cells were exposed for 24 h to 10 μg/cm² of winter PM2.5 (wPM) and summer PM10 (sPM) sampled in Milan. A microarray technology was used to profile the cells gene expression. Genes and microRNAs were analyzed by bioinformatics technique to identify pathways involved in cellular responses. Selected genes and pathways were validated at protein level (western blot, membrane protein arrays and ELISA).The molecular networks activated by the two PM evidenced a correlation among oxidative stress, inflammation and DNA damage responses. sPM induced the release of pro-inflammatory mediators, although miR-146a and genes related to inflammation resulted up-regulated by both PM. Moreover both PM affected a set of genes, proteins and miRNAs related to antioxidant responses, cancer development, extracellular matrix remodeling and cytoskeleton organization, while miR-29c, implicated in epigenetic modification, resulted up-regulated only by wPM. sPM effects may be related to biological and inorganic components, while wPM apparently related to the high content of organic compounds.These results may be helpful for the individuation of biomarkers for PM exposure, linked to the specific PM physico-chemical properties.
Показать больше [+] Меньше [-]Transcriptomics changes and the candidate pathway in human macrophages induced by different PM2.5 extracts Полный текст
2021
An, Jing | Tang, Waner | Wang, Lu | Xue, Wanlei | Yao, Weiwei | Zhong, Yufang | Qiu, Xinghua | Li, Yi | Chen, Yingjun | Wang, Hongli | Shang, Yu
Ambient fine particulate matter (PM₂.₅) is a worldwide environmental problem and is posing a serious threat to human health. Until now, the molecular toxicological mechanisms and the crucial toxic components of PM₂.₅ remain to be clarified. This study investigated the whole transcriptomic changes in THP-1 derived macrophages treated with different types of PM₂.₅ extracts using RNA sequencing technique. Bioinformatics analyses covering biological functions, signal pathways, protein networks and node genes were performed to explore the candidate pathways and critical genes, and to find the potential molecular mechanisms. Results of Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes pathway (KEGG), and protein-protein interaction (PPI) networks revealed that water extracts (WEs) of PM₂.₅ obviously influenced genes and molecular pathways responded to oxidative stress and inflammation. Dichloromethane extracts (DEs) specifically affected genes and signal cascades related to cell cycle progress process. Furthermore, compared with WEs collected in heating season, non-heating season WEs induced much higher expression levels of Ca-associated genes (including phosphodiesterase 4B and cyclooxygenase-2), which may consequently result in more severe inflammatory responses. While, for DEs exposure, the heating season (DH) group showed extensive induction of deferentially expressed genes (DEGs) related to cell cycle pathway, which may be caused by the higher polycyclic aromatic hydrocarbons (PAHs) contents in DH samples than those from non-heating season. In conclusion, the oxidative stress and inflammation response are closely correlated with cellular responses in THP-1 derived macrophages induced by water soluble components of PM₂.₅, and cell cycle dysregulation may play an important role in biological effects induced by organic components. The different transcriptomic changes induced by seasonal PM₂.₅ extracts may partially depend on the contents of PAHs and metal ions, respectively.
Показать больше [+] Меньше [-]Environmental level bisphenol A accelerates alterations of the reno-cardiac axis by the MAPK cascades in male diabetic rats: An analysis based on transcriptomic profiling and bioinformatics Полный текст
2021
Wu, Bin | Zhao, Qiangqiang | Li, Zuoneng | Min, Zhiteng | Shi, Mengdie | Nie, Xinmin | He, Qingnan | Gu̇i, Ru̇ng
In humans and animal models, the kidneys and cardiovascular systems are negatively affected by BPA from the environment. It is considered that BPA have some potential estrogen-like and non-hormone-like properties. In this study, RNA-sequencing and its-related bioinformatics was used as the basic strategy to clarify the characteristic mechanisms of kidney–heart axis remodeling and dysfunction in diabetic male rats under BPA exposure. We found that continuous BPA exposure in diabetic rats aggravated renal impairment, and caused hemodynamic disorders and dysfunctions. There were 655 and 125 differentially expressed genes in the kidney and heart, respectively. For the kidneys, functional annotation and enrichment, and gene set enrichment analyses identified bile acid secretion related to lipid synthesis and transport, and MAPK cascade pathways. For the heart, these bioinformatics analyses clearly pointed to MAPKs pathways. A total of 12 genes and another total of 6 genes were identified from the kidney tissue and heart tissue, respectively. Western blotting showed that exposure to BPA activated MAPK cascades in both organs. In this study, the exacerbated remodeling of diabetic kidney–heart axis under BPA exposure and diabetes might occur through hemodynamics, metabolism disorders, and the immune-inflammatory response, as well as continuous estrogen-like stimulation, with focus on the MAPK cascades.
Показать больше [+] Меньше [-]