Уточнить поиск
Результаты 1-10 из 25
Effects of multi-year biofumigation on soil bacterial and fungal communities and strawberry yield
2020
Zhang, Daqi | Yan, Dongdong | Cheng, Hongyan | Fang, Wensheng | Huang, Bin | Wang, Xianli | Wang, Xiaoning | Yan, Yue | Ouyang, Canbin | Li, Yuan | Wang, Qiuxia | Cao, Aocheng
Biofumigation is an effective, non-chemical method to control soil-borne pests and diseases and to maximize crop yield. We studied the responses of soil bacterial and fungal communities, the soil’s nutritional state and strawberry yield, when the soil was biofumigated each year for five consecutive years using fresh chicken manure (BioFum). BioFum significantly increased the soil’s NH4+-N, NO3−-N, available P and K and organic matter. Fusarium spp. and Phytophthora spp. which are known to cause plant disease, were significantly decreased after BioFum. In addition, Biofum increased the soil’s temperature, enhanced chlorophyll levels in the leaves of strawberry plants, and the soluble sugar and ascorbic acid content in strawberry fruit. We used high-throughput gene sequencing to monitor changes in the soil’s bacterial and fungal communities. Although BioFum significantly decreased the diversity of these communities, it increased the relative abundance of some biological control agents in the phylum Actinobacteria and the genera Pseudomonas, Bacillus and Chaetomium. An increase in these biological control agents would reduce the incidence of soil-borne pathogens and plant disease. Although strawberry marketable yield using BioFum was higher in the first three years, the decline in the final two years could be due to the accumulation of P and K which may have delayed flowering and fruiting. Methods to overcome yield losses using BioFum need to be developed in the future. Our research, however, showed that BioFum enhanced soil fertility, reduced the presence of soil pathogens, increased the relative abundance of beneficial bacteria and fungi and improved strawberry quality. Unlike chemical soil treatments that can cause pest and disease resistance when used continuously over many years, our multi-year research program on BioFum showed that this treatment provided significant benefits to the soil, plant and strawberry fruit.
Показать больше [+] Меньше [-]Effects of pollutant accumulation by the invasive weed saltcedar (Tamarix ramosissima) on the biological control agent Diorhabda elongata (Coleoptera: Chrysomelidae)
2009
Sorensen, Mary A. | Parker, David R. | Trumble, John T.
Hydroponic greenhouse studies were used to investigate the effect of four anthropogenic pollutants (perchlorate (ClO4-), selenium (Se), manganese (Mn), and hexavalent chromium (Cr (VI))) on the biological control agent Diorhabda elongata Brullé. Contaminant concentrations were quantified for experimental Tamarix ramosissima Ledab. plants and D. elongata beetles. Growth of larvae was significantly reduced by Se contamination, but was not affected by the presence of perchlorate, Mn, or Cr (VI). All of the contaminants were transferred from plants to D. elongata beetles. Only Cr (VI) was accumulated at greater levels in beetles than in their food. Because T. ramosissima grows in disturbed areas, acquires salts readily, and utilizes groundwater, this plant is likely to accumulate anthropogenic pollutants in contaminated areas. This study is one of the first to investigate the potential of an anthropogenic pollutant to influence a weed biological control system.
Показать больше [+] Меньше [-]Sublethal effect of agronomical surfactants on the spider Pardosa agrestis
2016
Niedobová, Jana | Hula, Vladimír | Michalko, Radek
In addition to their active ingredients, pesticides contain also additives – surfactants. Use of surfactants has been increasing over the past decade, but their effects on non-target organisms, especially natural enemies of pests, have been studied only very rarely. The effect of three common agrochemical surfactants on the foraging behavior of the wolf spider Pardosa agrestis was studied in the laboratory. Differences in short-term, long-term, and overall cumulative predatory activities were investigated. We found that surfactant treatment significantly affected short-term predatory activity but had no effect on long-term predatory activity. The surfactants also significantly influenced the cumulative number of killed prey. We also found the sex-specific increase in cumulative kills after surfactants treatment. This is the first study showing that pesticide additives have a sublethal effect that can weaken the predatory activity of a potential biological control agent. More studies on the effects of surfactants are needed to understand how they affect beneficial organisms in agroecosystems.
Показать больше [+] Меньше [-]Comparative susceptibility of two Neotropical predators, Eriopis connexa and Chrysoperla externa, to acetamiprid and pyriproxyfen: Short and long-term effects after egg exposure
2017
Rimoldi, Federico | Fogel, Marilina N. | Ronco, Alicia E. | Schneider, Marcela I.
Compatibility assessments between selective insecticides and the natural enemies of pests are essential for integrated-pest-management programs. Chrysoperla externa and Eriopis connexa are two principal Neotropical predators of agricultural pests whose conservation in agroecosystems requires a toxicity evaluation of pesticides to minimize the impact on those beneficial insects on the environment. The objective of this work was to evaluate the toxicity of the insecticides pyriproxyfen and acetamiprid on C. externa and E. connexa eggs exposed to the maximum recommended field concentrations of each along with three successive dilutions. The survival and the immature developmental time were assessed daily until adulthood and the mean survival time calculated over a 10-day period. The cumulative survival of E. connexa was reduced at all concentrations of both insecticides, while that of C. externa was significantly decreased by ≥50 mg L⁻¹ of acetamiprid and ≥37.6 mg L⁻¹ of pyriproxyfen. In both species, the reductions occurred principally on the eggs and first larval instar. Survival curves, in general, differed from those of the controls, with the mean survival time of E. connexa being significantly shorter in insecticides treatments than that of the controls. Certain concentrations of each of the insecticide lengthened the egg and first-larval-instar developmental periods of E. connexa and C. externa, respectively. Also, pyriproxyfen reduced the first-larval-instar period and lengthened the fourth of E. connexa. Acetamiprid was more toxic to E. connexa than to C. externa at the two highest concentrations. Conversely, at those same concentrations of pyriproxyfen, the relative toxicity to the two species was reversed. The present work represents the first investigation on the comparative susceptibility of two relevant Neotropical biological control agents to acetamiprid and pyriproxyfen. Also, it highlights the necessity of assessing long-term effects in the compatibility studies between natural enemies of agricultural pests and insecticides.
Показать больше [+] Меньше [-]Potential of vermicompost extract in enhancing the biomass and bioactive components along with mitigation of Meloidogyne incognita-induced stress in tomato
2022
Tikoria, Raman | Arawindara Kaura, | Ohri, Puja
Increasing inorganic fertilizer and pesticide use has been linked to increased health risks for humans and cattle, as well as substantial water and soil contamination. In recent years, vermicomposting has shown to be a viable alternative to chemical pesticides. Vermicompost and vermicompost products such as extract and leachate assist plants in a number of ways. According to recent studies, vermicompost extract (VCE), when used as a supplement, is thought to work as a growth and stress tolerance booster for plants. These liquid supplements also help to suppress a range of pests, such as root knot nematodes. In the present study, neem- and cattle dung-based vermicompost extracts of different concentrations (0, 20, 40, 60, 80 and 100%) were prepared and used for their application against nematode infection in tomato seedlings under laboratory conditions. Apart from its antagonistic action against Meloidogyne incognita, the influence of VCE on plant growth was investigated by analyzing its morphological characteristics in tomato seedlings infected and uninfected with M. incognita. Seeds were pre-soaked in VCE for the seed priming process before being allowed for germination. After 10 days of nematode inoculation, biochemical parameters like protein content, activity of antioxidative enzymes, non-enzymatic antioxidants, stress indices, photosynthetic pigments, proline content and secondary metabolites were also analyzed. The results revealed that neem-based VCE was fatal to second-stage juveniles, with an 82% mortality rate following exposure to the highest dose. When eggs were exposed to 100% VCE, 33.8% of hatching was suppressed, indicating that VCE had an antagonistic effect on nematode egg hatching. Further, all the morphological and biochemical parameters were significantly enhanced in VCE-treated tomato seedlings as compared to untreated seedlings. Stress indices were also found to be significantly lowered by the VCE treatments in the infected plants. The effect of VCE on seedling growth and physiology was shown to be concentration dependent. As a result, the current findings show that VCE has the potential to be used as a plant growth accelerator as well as an environmentally friendly biocontrol agent against nematode pathogenesis in tomato plants.
Показать больше [+] Меньше [-]Essential oil of Chrysanthemum indicum L.: potential biocontrol agent against plant pathogen Phytophthora nicotianae
2019
Han, Xiao-Bin | Zhao, Jian | Cao, Jian-Min | Zhang, Cheng-Sheng
Phytophthora nicotianae is currently considered one of the most devastating oomycete plant pathogens, and its control frequently relies solely on the use of systemic fungicides. There is an urgent need to find environment-friendly control techniques. This study examined the chemical composition, inhibitory activity, and possible modes of action of the essential oil of Chrysanthemum indicum L. (EOC) flower heads against P. nicotianae. The EOC was obtained using hydrodistillation at a 0.15% yielded. It inhibited mycelial growth and spore germination of P. nicotianae at a minimum inhibitory concentration (MIC) of 200 μL/L, and exhibited fumigation effects (92.68% inhibition at 157.48 μL/L). Marked deformation of P. nicotianae mycelia included deformed tip enlargement, shrinkage, and rupture. Further, 55 and 47 compounds were identified using gas chromatography-mass spectrometry (GC-MS) and headspace solid-phase microextraction (HS-SPME) GC-MS analyses, representing 88.2% and 98.91% of the total EOC, respectively. Monoterpenes (25.77%) and sesquiterpenes (54.14%) were the major components identified using GC-MS, whereas monoterpenes were the main constituents in the HS-SPME GC-MS analysis. The higher proportions of sesquiterpenes and monoterpenes could be responsible for the inhibitory activity of EOC, which increased mycelia membrane permeability and the content of mycelial malondialdehyde (MDA) in a dose-dependent manner. Cell death also occurred. Thus, destruction of the cell wall and membrane might be two modes of action of EOC. Our results would be useful for the development of a new plant source of fungicide for P. nicotianae-induced disease.
Показать больше [+] Меньше [-]Dispersion, persistence, and stability of the biocontrol agent Penicillium frequentans strain 909 after stone fruit tree applications
2019
Guijarro, Belen | Larena, Inmaculada | Vilanova, Laura | Torres, Rosario | Balsells-Llauradó, Marta | Teixidó, Neus | Melgarejo, Paloma | De Cal, Antonieta
The capacity of dispersion, persistence, and stability from biocontrol agents is essential before these organisms can be developed into a commercial product. Interactions that microorganisms establish with stone fruit trees may be beneficial in the exploitation of trees in agriculture as crop production. The natural background levels of Penicillium frequentans strain 909 dispersion, persistence, and stability were assessed after tree applications and postharvest conditions. A fingerprinting-based approach to trace genetic stability of P. frequentans along stored time and its release in the field was developed. P. frequentans was successfully traced and discriminated. This strain was dispersed well in treated trees, persisting in the ecosystem up to 2 weeks and staying genetically stable after 36 months of storage. However, the dispersal of P. frequentans was very limited on around untreated trees and soil. P. frequentans dispersed randomly into the air, and its presence reduced from the first day to disappear completely at 15–21 days after application. Great losses of P. frequentans and its increased dispersal in open field conditions probably resulted from rainfall. Biological control strategies with Pf909 were discussed.
Показать больше [+] Меньше [-]Bioagents and silicon promoting fast early upland rice growth
2018
de Sousa, ThatyanePereira | de Souza, AlanCarlos Alves | de Filippi, MartaCristina Corsi | Lanna, AnnaCristina | Cortês, MarcioVinicius | Pinheiro, HugoAlves | da Silva, GiseleBarata
Upland rice can overcome major challenges through the insertion of silicate fertilization and the presence of plant growth-promoting microorganisms (PGPMs) during its cultivation, as these factors promote an increase in vigor and plant disease resistance. Two consecutive experiments were conducted to evaluate the beneficial effects of silicon fertilization combined with the PGPM, Pseudomonas fluorensces, Burkholderia pyrrocinia, and a pool of Trichoderma asperellum, in upland rice seedlings, cultivar BRS Primavera CL: (a) E1, selecting PGPM type and Si doses for rice growth promotion and leaf blast supression, and (b) E2, evaluating physiological characteristics correlated with mechanisms involved in the higher vegetative growth in highlighted treatments from E1. In E1, 2 Si t ha⁻¹ combined with the application of T. asperellum pool or PGPM mixture increased 54% in root dry matter biomass and 35 and 65% in shoot and root lengths, respectively; it also suppressed 99% of rice blast severity. In E2, shoot and root dry matter biomass and length, photosynthetic rate, water use efficiency, total soluble sugar, and chloroplastidic pigments were superior in BRS Primavera CL seedlings treated with 2 Si t ha⁻¹ and T. asperellum pool or PGPM mixture. Higher salicilic and jasmonic acid levels were found in seedlings treated with Si and T. asperellum pool, individually. These physiological characteristics may explain, in part, the higher vigor of upland rice seedlings promoted by the synergistic effect between silicate fertilization and beneficial microorganisms.
Показать больше [+] Меньше [-]Biophysical characterization of Acacia caesia-fabricated silver nanoparticles: effectiveness on mosquito vectors of public health relevance and impact on non-target aquatic biocontrol agents
2018
Benelli, Giovanni | Kadaikunnan, Shine | Alharbi, NaiyfS. | Govindarajan, Marimuthu
Mosquito-borne diseases lead to serious public health concerns in tropical and sub-tropical countries worldwide, due to development of mosquito resistance to synthetic pesticides, non-target effects of pesticides, and socioeconomic reasons. Currently, green nanotechnology is a promising research field, showing a wide range of potential applications in vector control programs. The employ of natural products as reducing agents to fabricate insecticidal nanocomposites is gaining research attention worldwide, due to low costs and high effectiveness. Interestingly, biophysical features of green-synthesized nanoparticles strongly differ when different botanicals are employed for nanosynthesis. In this study, a cheap Acacia caesia leaf extract was employed to fabricate silver nanoparticles (Ag NPs) with ovicidal, larvicidal, and adulticidal toxicity against three mosquito vectors, Anopheles subpictus, Aedes albopictus, and Culex tritaeniorhynchus. Ag NPs were analyzed by various biophysical methods, including spectroscopy (UV-visible spectrophotometry, XRD, FTIR, EDX) and microscopy (SEM, TEM, AFM) techniques. High acute larvicidal potential was observed against larvae of An. subpictus (LC₅₀ = 10.33 μg/ml), Ae. albopictus (LC₅₀ = 11.32 μg/ml), and Cx. tritaeniorhynchus (LC₅₀ = 12.35 μg/ml). Ag NPs completely inhibited egg hatchability on three vectors at 60, 75, and 90 μg/ml, respectively. In adulticidal assays, LD₅₀ values were 18.66, 20.94, and 22.63 μg/ml. If compared to mosquito larvae, Ag NPs were safer to three non-target aquatic biocontrol agents, with LC₅₀ ranging from 684 to 2245 μg/ml. Overall, our study highlights the potential of A. caesia as an abundant and cheap bioresource to fabricate biogenic Ag NPs effective against mosquito young instars and adults, with moderate impact on non-target aquatic biocontrol agents.
Показать больше [+] Меньше [-]Lipopeptides from Bacillus amyloliquefaciens strain 32a as promising biocontrol compounds against the plant pathogen Agrobacterium tumefaciens
2018
Abdallah, Dorra Ben | Tounsi, Slim | Gharsallah, Houda | Hammami, Adnane | Frikha-Gargouri, Olfa
Despite the potential biological importance of lipopeptides from Bacillus amyloliquefaciens as antimicrobial compounds, their effects on Agrobacterium tumefaciens biofilms have not been previously studied. These latter are important virulence factors for the development and re-occurrence of crown gall disease. As part of the development of a new biopesticide acting as anti-biofilm and biocontrol agent, we investigated for the first time the ability of a mixture of lipopeptides produced by B. amyloliquefaciens strain 32a to inhibit the tumor formation on plants and to reduce the formation of biofilms by the phytopathogenic A. tumefaciens strains C58 and B6. The mixture was found to display a strong biosurfactant activity as well as bactericidal activity against planktonic Agrobacterium cells. Moreover, the lipopeptide treatment inhibited biofilm formation in the range of 79.58 ± 0.60–100.00 ± 0.00% and dislodged 43.42 ± 0.91–93.89 ± 2.70% of preformed biofilm. For these assays, fluorescence microscopy did not show any adherent cell in the anti-adhesive assay and only few ones in the cell-dislodging assay. More importantly, lipopeptide-enriched extract inhibits tumor formation on tomato stem when treatments were applied after pathogen adhesion to wounded tissues. By virtue of its ability to inhibit biofilms formed on biotic and abiotic surfaces and to control efficiently tumor development, the 32a lipopeptide mixture may represent an excellent new tool for an efficient biocontrol of crown gall disease.
Показать больше [+] Меньше [-]