Уточнить поиск
Результаты 1-10 из 50
Biodegradation of Polycyclic Aromatic Hydrocarbons in Mangrove Sediments Under Different Strategies: Natural Attenuation, Biostimulation, and Bioaugmentation with Rhodococcus erythropolis T902.1 Полный текст
2016
Semboung Lang, Firmin | Destain, Jacqueline | Delvigne, Frank | Druart, Philippe | Ongena, Marc | Thonart, Philippe
peer reviewed | Polycyclic aromatic hydrocarbons (PAHs) are pollutants that occur in mangrove sediments. Their removal by bacteria often depends on specific characteristics as the number of benzene rings they possess and their solubility. Their removal also depends on environmental factors, such as pH, temperature, oxygen, and the ability of the endogenous or exogenous microflora to metabolize hydrocarbons.With the aim of treating mangrove sediments polluted by hydrocarbons in a biological way, a biodegradation experiment was conducted using mangrove sediments artificially contaminated with a mixture of four PAHs. The study used Rhodococcus erythropolis as an exogenous bacterial strain in order to assess the biodegradation of the PAH mixture by natural attenuation, biostimulation, bioaugmentation, and a combination of biostimulation and bioaugmentation. The results showed that the last three treatments were more efficient than natural attenuation. The biostimulation/bioaugmentation combination proved to be the most effective PAH degradation treatment.
Показать больше [+] Меньше [-]Characterization and Evaluation of the Potential of a Diesel-Degrading Bacterial Consortium Isolated from Fresh Mangrove Sediment Полный текст
2016
Semboung Lang, Firmin | Destain, Jacqueline | Delvigne, Frank | Druart, Philippe | Ongena, Marc | Thonart, Philippe
peer reviewed | Hydrocarbons are ubiquitous and persistent organic pollutants in the environment. In wetlands and marine environments, particularly in mangrove ecosystems, their increase and significant accumulation result from human activities such as oil and gas exploration and exploitation operations. Remediation of these ecosystems requires the development of adequate and effective strategies. Natural attenuation, biostimulation, and bioaugmentation are all biological soil treatment techniques that can be adapted to mangroves. Our experiments were performed on samples of fresh mangrove sediments from the Cameroon estuary and mainly from the Wouri River in Cameroon. This study aims to assess the degradation potential of a bacterial consortium isolated from mangrove sediment. The principle of our bioremediation experiments is based on a series of tests designed to evaluate the potential of an active indigenous microflora and three exogenous pure strains, to degrade diesel with/without adding nutrients. The experiments were conducted in laboratory flasks and a greenhouse in microcosms. In one case, as in the other, the endogenous microflora showed that it was able to degrade diesel. Under stress of the pollutant, the endogenous microflora fits well enough in the middle to enable metabolism of the pollutant. However, the Rhodococcus strain was more effective over time. The degradation rate was 77 and 90%in the vials containing the sterile sediments and non-sterile sediments, respectively. The results are comparable with those obtained in the microcosms in a greenhouse where only the endogenous microflora were used. The results of this study show that mangrove sediment contains an active microflora that can metabolize diesel. Indigenous and active microflora show an interesting potential for diesel degradation.
Показать больше [+] Меньше [-]Integrated biotechnology to mitigate green tides Полный текст
2022
Ren, Cheng-Gang | Liu, Zheng-Yi | Zhong, Zhi-Hai | Wang, Xiao-Li | Qin, Song
Around the world, green tides are happening with increasing frequency because of the dual effects of increasingly intense human activity and climate change; this leads to significant impacts on marine ecology and economies. In the last decade, the world's largest green tide, which is formed by Ulva/Enteromorpha porifera, has become a recurrent phenomenon every year in the southern Yellow Sea (China), and it has been getting worse. To alleviate the impacts of such green tide outbreaks, multiple measures need to be developed. Among these approaches, biotechnology plays important roles in revealing the outbreak mechanism (e.g., molecular identification technology for algal genotypes), controlling and preventing outbreaks at the origin sites (e.g., technology to inhibit propagation), and utilizing valuable algal biomass. This review focuses on the various previously used biotechnological approaches that may be applicable to worldwide seaweed blooms that result from global climate change and environmental degradation.
Показать больше [+] Меньше [-]Removal of seven endocrine disrupting chemicals (EDCs) from municipal wastewater effluents by a freshwater green alga Полный текст
2019
Bai, Xuelian | Acharya, Kumud
The present endocrine disrupting chemicals (EDCs) in wastewater effluents due to incomplete removal during the treatment processes may cause potential ecological and human health risks. This study evaluated the removal and uptake of seven EDCs spiked in two types of wastewater effluent (i.e., ultrafiltration and ozonation) and effluent cultivated with the freshwater green alga Nannochloris sp. In ultrafiltration effluent cultivated with Nannochloris sp. for 7 days, the removal rate of 17β-estradiol (E2), 17α-ethinylestradiol (EE2), and salicylic acid (SAL) was 60%; but Nannochloris sp. did not promote the removal of other EDCs studied. The algal-mediated removal of E2, EE2, and SAL was attributed to photodegradation and biodegradation. Triclosan (TCS) underwent rapid photodegradation regardless of adding algae in the effluent with 63%–100% removal within 7 days. Triclosan was also found associated with algal cells immediately after adding algae, and thus the primary mechanisms involved were photodegradation and bioremoval (i.e., bioadsorption and bioaccumulation). After algal cultivation, TCS still has a bioaccumulation potential to pose high risks within the food web and the endocrine disrupting properties of the residual estrogens in the effluent are not eliminated. Algal cultivation can be exploited to treat wastewater effluents but the removal efficiencies of EDCs highly depend on chemical types.
Показать больше [+] Меньше [-]Targeted inactivation of antibiotic-resistant Escherichia coli and Pseudomonas aeruginosa in a soil-lettuce system by combined polyvalent bacteriophage and biochar treatment Полный текст
2018
Ye, Mao | Sun, Mingming | Zhao, Yuanchao | Jiao, Wentao | Xia, Bing | Liu, Manqiang | Feng, Yanfang | Zhang, Zhongyun | Huang, Dan | Huang, Rong | Wan, Jinzhong | Du, Ruijun | Jiang, Xin | Hu, Feng
High abundances of antibiotic-resistant pathogenic bacteria (ARPB) and antibiotic resistance genes (ARGs) in agricultural soil-plant systems have become serious threats to human health and environmental safety. Therefore, it is crucial to develop targeted technology to control existing antibiotic resistance (AR) contamination and potential dissemination in soil-plant systems. In this work, polyvalent bacteriophage (phage) therapy and biochar amendment were applied separately and in combination to stimulate ARPB/ARG dissipation in a soil-lettuce system. With combined application of biochar and polyvalent phage, the abundance of Escherichia coli K-12 (tetR) and Pseudomonas aeruginosa PAO1 (ampR + fosR) and their corresponding ARGs (tetM, tetQ, tetW, ampC, and fosA) significantly decreased in the soil after 63 days' incubation (p < 0.05). Similar results for endophytic K-12 and PAO1, and ARGs, were also obtained in lettuce tissues following combined treatment. Additionally, high throughput sequencing revealed that biochar and polyvalent phage synergetically improved the structural diversity and functional stability of the indigenous bacterial communities in soil and the endophytic ones in lettuce. Hence, this work proposes a novel biotechnology that combines biochar amendment and polyvalent phage therapy to achieve targeted inactivation of ARPB, which stimulates ARG dissipation in soil-lettuce systems.
Показать больше [+] Меньше [-]Antibiotic resistance marker genes as environmental pollutants in GMO-pristine agricultural soils in Austria Полный текст
2015
Woegerbauer, Markus | Zeinzinger, Josef | Gottsberger, Richard Alexander | Pascher, Kathrin | Hufnagl, Peter | Indra, Alexander | Fuchs, Reinhard | Hofrichter, Johannes | Kopacka, Ian | Korschineck, Irina | Schleicher, Corina | Schwarz, Michael | Steinwider, Johann | Springer, Burkhard | Allerberger, Franz | Nielsen, Kaare M. | Fuchs, Klemens
Antibiotic resistance genes may be considered as environmental pollutants if anthropogenic emission and manipulations increase their prevalence above usually occurring background levels. The prevalence of aph(3′)-IIa/nptII and aph(3′)-IIIa/nptIII – frequent marker genes in plant biotechnology conferring resistance to certain aminoglycosides – was determined in Austrian soils from 100 maize and potato fields not yet exposed to but eligible for GMO crop cultivation. Total soil DNA extracts were analysed by nptII/nptIII-specific TaqMan real time PCR. Of all fields 6% were positive for nptII (median: 150 copies/g soil; range: 31–856) and 85% for nptIII (1190 copies/g soil; 13–61600). The copy-number deduced prevalence of nptIII carriers was 14-fold higher compared to nptII. Of the cultivable kanamycin-resistant soil bacteria 1.8% (95% confidence interval: 0–3.3%) were positive for nptIII, none for nptII (0–0.8%). The nptII-load of the studied soils was low rendering nptII a typical candidate as environmental pollutant upon anthropogenic release into these ecosystems.
Показать больше [+] Меньше [-]Isolation and characterization of mesotrione-degrading Bacillus sp. from soil Полный текст
2009
Batisson, Isabelle | Crouzet, Olivier | Besse-Hoggan, Pascale | Sancelme, Martine | Mangot, Jean-François | Mallet, Clarisse | Bohatier, Jacques
Bacteria from this soil were cultured in mineral salt solution supplemented with mesotrione as sole source of carbon for the isolation of mesotrione-degrading bacteria. The bacterial community structure of the enrichment cultures was analyzed by temporal temperature gradient gel electrophoresis (TTGE). The TTGE fingerprints revealed that mesotrione had an impact on bacterial community structure only at its highest concentrations and showed mesotrione-sensitive and mesotrione-adapted strains. Two adapted strains, identified as Bacillus sp. and Arthrobacter sp., were isolated by colony hybridization methods. Biodegradation assays showed that only the Bacillus sp. strain was able to completely and rapidly biotransform mesotrione. Among several metabolites formed, 2-amino-4-methylsulfonylbenzoic acid (AMBA) accumulated in the medium. Although sulcotrione has a chemical structure closely resembling that of mesotrione, the isolates were unable to degrade it. A Bacillus sp. strain isolated from soil was able to completely and rapidly biotransform the triketone herbicide mesotrione.
Показать больше [+] Меньше [-]Identification of a rice metallochaperone for cadmium tolerance by an epigenetic mechanism and potential use for clean up in wetland Полный текст
2021
Feng, Sheng Jun | Liu, Xue Song | Cao, Hong Wei | Yang, Zhi Min
Cadmium (Cd) is a toxic heavy metal that initiates diverse chronic diseases through food chains. Developing a biotechnology for manipulating Cd uptake in plants is beneficial to reduce environmental and health risks. Here, we identified a novel epigenetic mechanism underlying Cd accumulation regulated by an uncharacterized metallochaperone namely Heavy Metal Responsive Protein (HMP) in rice plants. OsHMP resides in cytoplasm and nucleus, dominantly induced by Cd stress and binds directly to Cd ions. OsHMP overexpression enhanced the rice growth under Cd stress but accumulated more Cd, whereas knockout or knockdown of OsHMP showed a contrasting effect. The enhanced Cd accumulation in the transgenic lines was confirmed by a long-term experiment with rice growing at the environmentally realistic Cd concentration in soil. The bisulfite sequencing and chromatin immunoprecipitation assessments revealed that Cd stress reduced significantly the DNA methylation at CpG (Cytosine-Guanine) and histone H3K9me2 marks in the upstream of OsHMP. By identifying a couple of mutants defective in DNA methylation and histone modification (H3K9me2) such as Osmet1 (methylatransfease1) and Ossdg714 (kryptonite), we found that the Cd-induced epigenetic hypomethylation at the region was associated with OsHMP overexpression, which consequently led to Cd detoxification in rice. The causal relationship was confirmed by the GUS reporter gene coupled with OsHMP and OsMET1 whereby OsMET1 repressed directly the OsHMP expression. Our work signifies that expression of OsHMP is required for Cd detoxification in rice plants, and the Cd-induced hypomethylation in the specific region is responsible for the enhanced OsHMP expression. In summary, this study gained an insight into the epigenetic mechanism for additional OsHMP expression which consequently ensures rice adaptation to the Cd-contaminated environment.
Показать больше [+] Меньше [-]Cadmium contamination in agricultural soils of China and the impact on food safety Полный текст
2019
Wang, Peng | Chen, Hongping | Kopittke, Peter M. | Zhao, Fang-Jie
Rapid industrialization in China during the last three decades has resulted in widespread contamination of Cd in agricultural soils. A considerable proportion of the rice grain grown in some areas of southern China has Cd concentrations exceeding the Chinese food limit, raising widespread concern regarding food safety. In this review, we summarize rice grain Cd concentrations in national Chinese markets and in field surveys from contaminated areas, and analyze the potential health risk associated with increased dietary Cd intake. For subsistence rice farmers living in some contaminated areas of southern China who mainly consume locally-produced Cd-contaminated rice, their estimated dietary Cd intake is now comparable to that for the population in the region of Japan where the Itai-Itai disease was first reported. Interventions must be taken urgently to reduce Cd intake for these farmers. We also analyze i) the main reasons causing elevated grain Cd concentrations in southern China, ii) the dominant biogeochemical processes controlling the solubility of Cd in paddy soils, and iii) molecular mechanisms for the uptake and translocation of Cd in rice plants. Based on these analyses, we propose a number of countermeasures to address soil Cd contamination, including i) mitigation of Cd transfer from paddy soils to rice grain, and ii) intervention in those farmers who consume home-grown Cd-contaminated rice. Liming to increase soil pH to 6.5 and gene editing biotechnology are effective strategies to decrease Cd accumulation in rice grain. For these local farmers with high-Cd exposure risk, local governments should monitor the Cd concentration in their home-grown rice and exchange those high-Cd rice with low-Cd rice in order to reduce their dietary Cd intake.
Показать больше [+] Меньше [-]Waste recombinant DNA: Effectiveness of thermo-treatment to manage potential gene pollution Полный текст
2009
Fu, Xiaohua | Li, Mengnan | Zheng, Guanghong | Le, Yiquan | Wang, Lei
Heating at 100 °C for 5-10 min is a common method for treating wastewater containing recombinant DNA in many bio-laboratories in China. In this experiment, plasmid pET-28b was used to investigate decay efficiency of waste recombinant DNA during thermo-treatment. The results showed that the decay half-life of the plasmid was 2.7-4.0 min during the thermo-treatment, and even heating for 30 min the plasmids still retained some transforming activity. Low pH promoted the decay of recombinant DNA, but NaCl, bovine serum albumin and EDTA, which existed in the most wastewater from bio-laboratories, protected DNA from degradation. Thus, the decay half-life of plasmid DNA may be longer than 2.7-4.0 min practically. These results suggest that the effectiveness of heating at 100 °C for treating waste recombinant DNA is low and a gene pollution risk remains when those thermo-treated recombinant DNAs are discharged into the environment. Therefore other simple and effective methods should be developed. Heating at 100 °C for 5-10 min to treat waste recombinant DNA has potential eco-risk.
Показать больше [+] Меньше [-]