Уточнить поиск
Результаты 1-4 из 4
Isolation and morphological study of ecologically-important insect “Hermetia illucens” collected from Roorkee compost plant
2017
Purkayastha, Debasree | Sarkar, Sudipta | Roy, Partha | Kazmi, Absar
Certain species of Hermetia illucens, also known as the Black Soldier Fly(BSF), were found in a compost plant in Roorkee located in Northern India. Its larvae arevoracious eaters of organic waste, hence can play an ecologically-important role in solidwaste management. Morphological analysis of various stages of BSF life cycle by SEMshowed that its body along with its wings is densely covered with hair. The identifiedspecies of BSF were black in color and oviposited into the composted material. The larvaegrew up to 30 mm long in 12 days from an initial length of only 6mm, gaining almost 200%of its initial weight after voraciously feeding on organic waste. The mouth of the H. illucensshowed a well-developed mandibular-maxillary complex that had similar characteristics ofscavengers, making the insect a suitable candidate for organic waste consumption.
Показать больше [+] Меньше [-]Two low-toxic Klebsiella pneumoniae strains from gut of black soldier fly Hermetia illucens are multi-resistance to sulfonamides and cadmium
2022
Shi, Zhihui | Zhang, Jie | Jiang, Yijie | Wen, Yiting | Gao, Zhenghui | Deng, Wenhui | Yin, Yumeng | Zhu, Fen
In recent years, pollution of antibiotics and heavy metal has often been reported in organic wastes. Saprophytic insects have been recorded as biological control agents in organic waste management. During organic waste conversion, the intestinal bacteria of the saprophytic insects play an important role in digestion, physiology, immunity and prevention of pathogen colonization. Black soldier fly (BSF) Hermetia illucens has been widely used as saprophytic insects and showed tolerance to sulfonamides (SAs) and cadmium (Cd). Diversity and changes in gut microbiota of black soldier fly larvae (BSFL) were evaluated through 16S rRNA high-throughput sequencing, and a decrease in diversity of gut microbiota along with an increase in SAs stress was recorded. Major members identified were Actinomycetaceae, Enterobacteriaceae, and Enterococcaceae. And fourteen multi-resistance Klebsiella pneumoniae strains were isolated. Two strains BSFL7-B-5 (from middle midgut of 7-day BSFL) and BSFL11-C-1 (from posterior midgut of 11-day BSFL) were found to be low-toxic and multi-resistance. The adsorption rate of SAs in 5 mg/kg solutions by these two strains reached 65.2% and 61.6%, respectively. Adsorption rate of Cd in 20 mg/L solutions was 77.2% for BSFL7-B-5. The strain BSFL11-C-1 showed higher than 70% adsorption rates of Cd in 20, 30 and 40 mg/L solutions. This study revealed that the presence of multi-resistance bacterial strains in the gut of BSFL helped the larvae against SAs or Cd stress. After determining how and where they are used, selected BSFL gut bacterial strains might be utilized in managing SAs or Cd contamination at suitable concentrations in the future.
Показать больше [+] Меньше [-]Identification of three metallothioneins in the black soldier fly and their functions in Cd accumulation and detoxification
2021
Zhang, Jie | Shi, Zhihui | Gao, Zhenghui | Wen, Yiting | Wang, Wanqiang | Liu, Wen | Wang, Xiaoping | Zhu, Fen
The black soldier fly (BSF) Hermetia illucens has a strong tolerance to cadmium stress. This helps to use BSF in entomoremediation of heavy metal pollution. Rich metallothionein (MT) proteins were thought to be important for some insects to endure the toxicity of heavy metal. We identified and characterized three MTs genes in BSF (BSFMTs), including BSFMT1, BSFMT2A, and BSFMT2B. Molecular modeling was used to predict metal binding sites. Phylogenetic analysis was used to identify gene families. Overexpression of the recombinant black soldier fly metallothioneins was found to confer Cd tolerance in Escherichia coli. Finally, functions of BSFMTs in BSF were explored through RNA interference (RNAi). RNAi results of BSFMT2B showed that the larval fresh weight decreased significantly, and the larvae mortality increased significantly. This study suggests that BSFMTs have important properties in Cd detoxification and tolerance in BSF. Further characterization analyses of physiological function about metallothioneins are necessary in BSF and other insects.
Показать больше [+] Меньше [-]Systematic characterization and proposed pathway of tetracycline degradation in solid waste treatment by Hermetia illucens with intestinal microbiota
2018
Cai, Minmin | Ma, Shiteng | Hu, Ruiqi | Tomberlin, Jeffery K. | Yu, Chan | Huang, Yongping | Zhan, Shuai | Li, Wu | Zheng, Longyu | Yu, Ziniu | Zhang, Jibin
Antibiotics can effectively protect livestock from pathogen infection, but residual antibiotics in manure bring risks to ecosystems and public health. Here, we demonstrated that black soldier fly larvae (BSFL) could provide an environmentally friendly manure treatment based on their ability to effectively and rapidly degrade tetracycline (TC). Investigation of the biological mechanisms and degradation pathways of TC by BSFL indicated that nearly 97% of TC was degraded within 12 days in a non-sterile BSFL treatment system, which is up to 1.6-fold faster than that achieved by normal composting. Our results showed that rapid TC-degradation was largely carried out by the intestinal microbiota of the larvae, which doubled the TC-degradation rates compared to those achieved in sterile BSFL systems. This conclusion was further supported by highly-efficient TC-biodegradation both in vivo and in vitro by four larval intestinal isolates. Moreover, detailed microbiome analysis indicated that intestinal bacterial and fungal communities were modified along with significantly increased tet gene copy number in the gut, providing the means to tolerate and degrade TC. Through analysis of TC degradation in vitro, four possible biodegradation products, two hydrolysis products and three conceivable inactivation products were identified, which suggested TC degradation reactions including hydrolysis, oxygenation, deamination, demethylation, ring-cleavage, modification, etc. In conclusion, our studies suggested an estimation of the fate of TC antibiotics in manure treatment by BSFL colonized by gut microbes. These results may provide a strategy for accelerating the degradation of antibiotics by adjusting the intestinal microbiota of BSFL.
Показать больше [+] Меньше [-]