Уточнить поиск
Результаты 1-6 из 6
Contaminants in bald eagles of the upper Midwestern U.S.: A framework for prioritizing future research based on in-vitro bioassays
2019
Elliott, Sarah M. | Route, William T. | DeCicco, Laura A. | VanderMeulen, David D. | Corsi, Steven R. | Blackwell, Brett R.
Several organic contaminants (OCs) have been detected in bald eagle (Haliaeetus leucocephalus) nestling (eaglet) plasma in the upper Midwestern United States. Despite frequent and relatively high concentrations of OCs in eaglets, little is understood about potential biological effects associated with exposure. We screened an existing database of OC concentrations in eaglet plasma collected from the Midwestern United States against bioactivity information from the ToxCast database. ToxCast bioactivity information consists of concentrations expected to elicit responses across a range of biological space (e.g. cellular, developmental, etc.) obtained from a series of high throughput assays. We calculated exposure—activity ratios (EAR) by calculating the ratio of plasma concentrations to concentrations available in ToxCast. Bioactivity data were not available for all detected OCs. Therefore, our analysis provides estimates of potential bioactivity for 19 of the detected OCs in eaglet plasma. Perfluorooctanesulfonic acid (PFOS) EAR values were consistently the highest among all study areas. Maximum EAR values were ≥1 for PFOS, perfluorononanoic acid, and bisphenol A in 99.7, 0.53 and 0.26% of samples, indicating that some plasma concentrations were greater than what may be expected to elicit biological responses. About 125 gene targets, indicative of specific biological pathways, were identified as potentially being affected. Inhibition of several CYP genes, involved in xenobiotic metabolism, were most consistently identified. Other identified biological responses have potential implications for motor coordination, cardiac functions, behavior, and blood circulation. However, it is unclear what these results mean for bald eagles, given that ToxCast data are generated using mammalian-based endpoints. Despite uncertainties and limitations, this method of screening environmental data can be useful for informing future monitoring or research focused on understanding the occurrence and effects of OCs in bald eagles and other similarly-positioned trophic species.
Показать больше [+] Меньше [-]Physiologically based toxicokinetic and toxicodynamic (PBTK-TD) modelling of Cd and Pb exposure in adult zebrafish Danio rerio: Accumulation and toxicity
2019
Zhang, Yan | Feng, Jianfeng | Gao, Yongfei | Liu, Xinyong | Zhu, Liang | Zhu, Lin
Accurately predicting the accumulation and toxicity of metals in organisms is a challenging work in ecotoxicology. Here, we developed and validated a physiologically based toxicokinetic and toxicodynamic (PBTK-TD) model for adult zebrafish exposed to Cd and Pb. The model included the gill, liver, intestine, gonad, carcass, and brain, which were linked by blood circulation in the PBTK process and by dynamic relationships between the target organ concentrations and mortality in the TD process. Results showed that the PBTK sub-model can accurately describe and predict the uptake, distribution and disposition kinetics of Cd and Pb in zebrafish. The exchange rates and the accumulation of the metals in the organs were significantly different. For Cd, the highest exchange rate was between blood and liver, and the greatest accumulation of Cd occurred in the liver. For Pb, the greatest accumulation occurred in the gill. The TD sub-model further indicated that metal concentrations in the gill may effectively act as more suitable indicator of Cd and Pb toxic effect than whole body or other organs. The proposed PBTK-TD model is helpful to understanding the fundamental processes by which zebrafish regulate the uptake and disposition of metal and to quantitatively predicting metal toxicity.
Показать больше [+] Меньше [-]Exposure to environmental level phenanthrene induces a NASH-like phenotype in new born rat
2018
Guo, Jiaojiao | Wang, Chonggang | Guo, Zhizhun | Zuo, Zhenghong
More and more evidence indicates that persistent organic pollutants (POPs) are a risk factor for non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH). Phenanthrene (Phe) is a kind of POP which existed extensively in the environment, but whose toxicity on mammals has so far received less focus. Subcutaneously injection of Phe (0.5, 5, 50 μg/kg) for 21 days induced significant NAFLD/NASH symptoms in new born rats. Exposure to environmental levels of Phe decreased body weight and liver-somatic index; impaired histology of liver; influenced the peroxisome proliferator-activated receptor gamma (PPARγ) signaling and lipid metabolism in liver; stimulated oxidative stress in the rats' liver; induced the variation of NFκB pathway and liver inflammatory response; and caused liver fibrosis via transforming growth factor β1 (tgfβ1). We speculated that the subcutaneously injected Phe was transferred to the liver through blood circulation, which may have induced the elevation of PPARγ directly or indirectly, leading to liver steatosis. Excess lipid, acting as the first hit, stimulated the second hit factors - oxidative stress, inflammatory response and lipid peroxidation, and finally resulted in steatohepatitis and liver fibrosis.
Показать больше [+] Меньше [-]The effects of henna (hair dye) on the embryonic development of zebrafish (Danio rerio)
2014
Manjunatha, Bangeppagari | Wei-bing, Peng | Ke-chun, Liu | Marigoudar, Shambanagouda R. | Xi-qiang, Chen | Xi-min, Wang | Xue, Wang
The powder of henna is extensively used as decorative skin paint for nail coloring and as a popular hair dye in Asian countries. Its human health risk is extensive, and it is frequently released as waste into the aquatic environment raising the concerns. Zebrafish (Danio rerio) embryos were employed to study the developmental effects of henna. Normal fertilized zebrafish embryos under standard water were selected for the control and test chambers. Three predetermined sublethal concentrations (100, 200, and 275 μM) of henna in 24-well cell culture plates were tested on 1-h postfertilized embryo (pfe) for 96 h. Observation for rates of survival and mortality was recorded; digital camera was used to image morphological anomalies of embryos with a stereomicroscope; and functional abnormalities at 24, 48, 72, and 96 h were performed. The hatching rates of embryos were reduced significantly when treated with 200 and 275 μM or higher concentrations of henna. Slow blood circulation in the whole body was observed with a median effect on hatching exposed to 200 and 275 μM of henna at 48-h pfe. At 72- and 96-h pfe, blood circulation was ceased in the whole body but still had a heartbeat. At 96-h pfe, pericardial sac edema, yolk sac edema, head deformation, spine crooked malformation, and tail malformation (bent tails or hook-like tails) were observed in the surviving larvae at 100 μM. In summary, exposure to henna at 100, 200, and 275 μM causes some altered morphological and physiological abnormalities including increased mortality, hatching delay, slow blood circulation, pericardial sac edema, yolk sac edema, abnormal body axes, twisted notochord, tail deformation, weak heartbeat, and growth retardation and was also detected in some treated embryos and groups having adverse effects on embryonic development of zebrafish provoking potential human developmental risk studies.
Показать больше [+] Меньше [-]Traffic aerosol lobar doses deposited in the human respiratory system
2017
Manigrasso, Maurizio | Vernale, Claudio | Avino, Pasquale
Aerosol pollution in urban environments has been recognized to be responsible for important pathologies of the cardiovascular and respiratory systems. In this perspective, great attention has been addressed to Ultra Fine Particles (UFPs < 100 nm), because they efficiently penetrate into the respiratory system and are capable of translocating from the airways into the blood circulation. This paper describes the aerosol regional doses deposited in the human respiratory system in a high-traffic urban area. The aerosol measurements were carried out on a curbside in downtown Rome, on a street characterized by a high density of autovehicular traffic. Aerosol number-size distributions were measured by means of a Fast Mobility Particle Sizer in the range from 5.6 to 560 nm with a 1 s time resolution. Dosimetry estimates were performed with the Multiple-Path Particle Dosimetry model by means of the stochastic lung model. The exposure scenario close to traffic is represented by a sequence of short-term peak exposures: about 6.6 × 10¹⁰ particles are deposited hourly into the respiratory system. After 1 h of exposure in proximity of traffic, 1.29 × 10¹⁰, 1.88 × 10¹⁰, and 3.45 × 10¹⁰ particles are deposited in the head, tracheobronchial, and alveolar regions. More than 95 % of such doses are represented by UFPs. Finally, according to the greater dose estimated, the right lung lobes are expected to be more susceptible to respiratory pathologies than the left lobes.
Показать больше [+] Меньше [-]Physiological biomarkers
1995
Depledge, M.H. (University of Plymouth (Royaume Uni). Plymouth Environmental Research Centre)