Уточнить поиск
Результаты 1-3 из 3
Botanical and synthetic pesticides alter the flower visitation rates of pollinator bees in Neotropical melon fields
2019
Tschoeke, Paulo Henrique | Oliveira, Eugênio E. | Dalcin, Mateus S. | Silveira-Tschoeke, Marcela Cristina A.C. | Sarmento, Renato A. | Santos, Gil Rodrigues
The ecological and economic contributions of pollinator bees to agricultural production have been threatened by the inappropriate and excessive use of pesticides. These pesticides are often applied in areas with ecological peculiarities (e.g., the Neotropical savannah-like region termed as Cerrado) that were not considered during the product development. Here, we conducted field experiments with melon (i.e., Cucumis melo L.) plants cultivated under Brazilian Cerrado conditions and evaluated the impacts of botanical (i.e., neem-based insecticide) and synthetic (i.e., the pyrethroid insecticide deltamethrin and the fungicides thiophanate-methyl and chlorothalonil) pesticides on the flower visitation rates of naturally occurring pollinator bees. Our results revealed that both honey bees (i.e., Apis mellifera L.) and non-Apis bees visited melon flowers and the intensity of bee visitation was moderately correlated with yield parameters (e.g., number of marketable fruits and fruit yield). Pesticide treatments differentially affected bee species. For instance, Plebeia sp. bees were not affected by any pesticide treatment, whereas both A. mellifera and Halictus sp. bees showed reduced visitation intensity after the application of deltamethrin or neem-based insecticides. Fungicide treatment alone did not influence the bee's visitation intensity. Deltamethrin-treated melon fields produced significantly lighter marketable fruits, and the melon yield was significantly lower in melon fields treated with the neem-based insecticide. Thus, our findings with such pollinator bees reinforce the idea that field applications of botanical pesticides may represent as risky as the applications of synthetic compounds, indicating that these alternative products should be submitted to risk assessments comparable to those required for synthetic products.
Показать больше [+] Меньше [-]Target and non-target botanical pesticides effect of Trichodesma indicum (Linn) R. Br. and their chemical derivatives against the dengue vector, Aedes aegypti L
2019
Chellappandian, Muthiah | Senthil-Nathan, Sengottayan | Vasantha-Srinivasan, Prabhakaran | Karthi, Sengodan | Thanigaivel, Annamalai | Kalaivani, Kandaswamy | Sivanesh, Haridoss | Stanley-Raja, Vethamonickam | Chanthini, Kanagaraj Muthu-Pandian | Shyam-Sundar, Narayanan
The effects of crude ethanol derived leaf extract Trichodesma indicum (Linn) (Ex-Ti) and their chief derivatives were accessed on the survival and development of the dengue mosquito Ae. aegypti also their non-toxic activity against mosquito predator. T. indicum is recognized to be the vital weed plant and a promising herb in the traditional ayurvedic medicine. In this study, the GC-MS chromatogram of Ex-Ti showed higher peak area percentage for cis-10-Heptadecenoic acid (21.83%) followed by cycloheptadecanone (14.32%). The Ex-Ti displayed predominant mortality in larvae with 96.45 and 93.31% at the prominent dosage (200 ppm) against III and IV instar. Correspondingly, sub-lethal dosage against the enzymatic profile of III and IV instar showed downregulation of α,β-carboxylesterase and SOD protein profiles at the maximum concentration of 100 ppm. However, enzyme level of GST as well as CYP450 increased significantly dependent on sub-lethal concentration. Likewise, fecundity and hatchability of egg rate of dengue mosquito decreased to the sub-lethal concentration of Ex-Ti. Repellent assay illustrates that Ex-Ti concentration had greater protection time up to 210 min at 100 ppm. Also, activity of Ex-Ti on adult mosquito displayed 100% mortality at the maximum dosage of 600, 500 and 400 ppm within the period of 50, 60 and 70 min, respectively. Photomicrography screening showed that lethal dosage of Ex-Ti (100 ppm) produced severe morphological changes with dysregulation in their body parts as matched to the control. Effects of Ex-Ti on the Toxorhynchites splendens IV instar larvae showed less mortality (43.47%) even at the maximum dosage of 1500 ppm as matched to the chemical pesticide Temephos. Overall, the present research adds a toxicological valuation on the Ex-Ti and their active constituents as a larvicidal, repellent and adulticidal agents against the global burdening dengue mosquito.
Показать больше [+] Меньше [-]Fabrication of highly effective mosquito nanolarvicides using an Asian plant of ethno-pharmacological interest, Priyangu (Aglaia elaeagnoidea): toxicity on non-target mosquito natural enemies
2018
Benelli, Giovanni | Govindarajan, Marimuthu | Senthilmurugan, Sengamalai | Vijayan, Periasamy | Kadaikunnan, Shine | Alharbi, NaiyfS. | Khaled, JamalM.
Mosquitoes threaten the lives of humans, livestock, pets and wildlife around the globe, due to their ability to vector devastating diseases. Aglaia elaeagnoidea, commonly known as Priyangu, is widely employed in Asian traditional medicine and pest control. Medicinal activities include anti-inflammatory, analgesic, anticancer, and anesthetic actions. Flavaglines, six cyclopenta[b]benzofurans, a cyclopenta[bc]benzopyran, a benzo[b]oxepine, and an aromatic butyrolactone showed antifungal properties, and aglaroxin A and rocaglamide were effective to control moth pests. Here, we determined the larvicidal action of A. elaeagnoidea leaf aqueous extract. Furthermore, we focused on Priyangu-mediated synthesis of Ag nanoparticles toxic to Culex quinquefasciatus, Aedes aegypti and Anopheles stephensi. The plant extract and the nanolarvicide were tested on three mosquito vectors, following the WHO protocol, as well as on three non-target mosquito predators. Priyangu-synthesized Ag nanoparticles were characterized by spectroscopic (UV, FTIR, XRD, and EDX) and microscopic (AFM, SEM, and TEM) analyses. Priyangu extract toxicity was moderate on Cx. quinquefasciatus (LC₅₀ 246.43; LC₉₀ 462.09 μg/mL), Ae. aegypti (LC₅₀ 229.79; LC₉₀ 442.71 μg/mL), and An. stephensi (LC₅₀ 207.06; LC₉₀ 408.46 μg/mL), respectively, while Priyangu-synthesized Ag nanoparticles were highly toxic to Cx. quinquefasciatus (LC₅₀ 24.91; LC₉₀ 45.96 μg/mL), Ae. aegypti (LC₅₀ 22.80; LC₉₀ 43.23 μg/mL), and An. stephensi (LC₅₀ 20.66; LC₉₀ 39.94 μg/mL), respectively. Priyangu extract and Ag nanoparticles were found safer to non-target larvivorous fishes, backswimmers, and waterbugs, with LC₅₀ ranging from 1247 to 37,254.45 μg/mL, if compared to target pests. Overall, the current research represents a modern approach integrating traditional botanical pesticides and nanotechnology to the control of larval populations of mosquito vectors, with negligible toxicity against non-target including larvivorous fishes, backswimmers, and waterbugs.
Показать больше [+] Меньше [-]