Уточнить поиск
Результаты 1-10 из 405
Effects of plant additives on the concentration of sulfur and nitrogen oxides in the combustion products of coal-water slurries containing petrochemicals
2020
Nyashina, G.S. | Kuznetsov, G.V. | Strizhak, P.A.
The active use of solid fossil fuels (coal) in the production of heat and electricity has led to significant pollution, climate change, environmental degradation, and an increase in morbidity and mortality. Many countries (in particular, European ones, China, Japan, the USA, Canada, etc.) have launched programs for using plant and agricultural raw materials to produce heat and electricity by burning them instead of or together with traditional fuels. It is a promising solution to produce slurry fuels, based on a mixture of coal processing, oil refining and agricultural waste. This paper presents the results of experimental research into the formation and assessment of the most hazardous emissions (sulfur and nitrogen oxides) from the combustion of promising coal slurry fuels with straw, sunflower and algae additives, i.e. the most common agricultural waste. A comparative analysis has been carried out to identify the differences in the concentrations of sulfur and nitrogen oxides from the combustion of typical coal, coal processing waste, as well as fuel slurries with and without plant additives. It has been shown that the concentration of sulfur and nitrogen oxides can be reduced by 62–87% and 12–57%, respectively, when using small masses of plant additives (no more than 10 wt%) and maintaining high combustion heat of the slurry fuel. However, the use of algae and straw in the slurry composition can increase the HCl emissions, which requires extra measures to fight corrosion. A generalizing criterion of slurry fuel vs. coal efficiency has been formulated to illustrate significant benefits of adding plant solid waste to coal-water slurries containing petrochemicals. Straw and sunflower waste (10 wt%) were found to be the best additives to reduce the air pollutant emissions.
Показать больше [+] Меньше [-]Vertical distribution of smoke aerosols over upper Indo-Gangetic Plain
2020
Attenuated backscatter profiles retrieved by the space borne active lidar CALIOP on-board CALIPSO satellite were used to measure the vertical distribution of smoke aerosols and to compare it against the ECMWF planetary boundary layer height (PBLH) over the smoke dominated region of Indo-Gangetic Plain (IGP), South Asia. Initially, the relative abundance of smoke aerosols was investigated considering multiple satellite retrieved aerosol optical properties. Only the upper IGP was selectively considered for CALIPSO retrieval based on prevalence of smoke aerosols. Smoke extinction was found to contribute 2–50% of the total aerosol extinction, with strong seasonal and altitudinal attributes. During winter (DJF), smoke aerosols contribute almost 50% of total aerosol extinction only near to the surface while in post-monsoon (ON) and monsoon (JJAS), relative contribution of smoke aerosols to total extinction was highest at about 8 km height. There was strong diurnal variation in smoke extinction, evident throughout the year, with frequent abundance of smoke particles at lower height (<4 km) during daytime compared to higher height during night (>4 km). Smoke injection height also varied considerably during rice (ON: 0.71 ± 0.65 km) and wheat (AM: 2.34 ± 1.34 km) residue burning period having a significant positive correlation with prevailing PBLH. Partitioning smoke AOD against PBLH into the free troposphere (FT) and boundary layer (BL) yield interesting results. BL contribute 36% (16%) of smoke AOD during daytime (nighttime) and the BL-FT distinction increased particularly at night. There was evidence that despite travelling efficiently to FT, major proportion of smoke AOD (50–80%) continue to remain close to the surface (<3 km) thereby, may have greater implications on regional climate, air quality, smoke transport and AOD-particulate modelling.
Показать больше [+] Меньше [-]Comparison of arsenic fractions and health risks in PM2.5 before and after coal-gas replacement
2020
Xie, Jiao-Jiao | Yuan, Chun-Gang | Xie, Jin | Niu, Xiao-Dong | Zhang, Xu-Rui | Zhang, Ke-Gang | Xu, Pei-Yao | Ma, Xiao-Ying | Lv, Xiang-Bing
Coal-Gas replacement project has been implemented to decrease haze pollution in China in recent years. Airborne arsenic (As) mostly originates from coal burning processes. It is noteworthy to compare the distribution of arsenic fraction in PM₂.₅ before and after coal-gas replacement. Eighty PM₂.₅ samples were collected in Baoding in December 2016 (coal dominated year) and December 2017 (gas dominated year) at different functional areas including residential area (RA), industrial area (IA), suburb (SB), roadside (ST) and Botanical Garden Park (BG). The fraction, bioavailability and health risk of As in the PM₂.₅ samples were investigated and compared between these two years. Arsenic was mainly distributed in the non-specifically sorbed fraction (F1) and the residual fraction (F5). However, the proportion of F1 to the total As in 2017 was higher than that in 2016, while the proportion of As in the amorphous and poorly-crystalline hydrous oxides of Fe and Al fraction (F3) in 2017 was lower. The distributions of fraction and bioavailability showed temporal and spatial characteristics. The total concentration and bioavailability of As in SB and IA were significantly higher than those in RA, ST and BG. The BF (Bioavailability Factor) values of As ranged from 0.30 to 0.61. Health risk assessment indicated that the hazard quotient (HQ) and carcinogenic risk (CR) of As in PM₂.₅ significantly decreased after coal-gas replacement.
Показать больше [+] Меньше [-]Household air pollution and personal exposure from burning firewood and yak dung in summer in the eastern Tibetan Plateau
2020
Ye, Wenlu | Saikawa, Eri | Avramov, Alexander | Cho, Seung-Hyun | Chartier, Ryan
This study assessed the sources, magnitudes, and chemical compositions of household air pollution (HAP) and personal exposure in traditional Tibetan households. We measured 24-h personal exposures to PM₂.₅ and kitchen area black carbon (BC) concentrations, using MicroPEMs and microAeths, respectively. Particulate polycyclic aromatic hydrocarbon (PAH) and inorganic element concentrations were quantified via post analyses of a subset of MicroPEM sample filters. Household surveys regarding participant demographics, cookstove usage, household fuel, cooking behaviors, and lifestyles were collected. The results reaffirm that burning firewood and yak dung, mainly for cooking, leads to high PM₂.₅ and BC exposures. The geometric mean concentration (95% confidence interval, CI) was 74.3 (53.6, 103) μg/m³ for PM₂.₅ and the arithmetic mean ± standard deviation (SD) concentration was 4.90 ± 5.01 μg/m³ for BC and 292 ± 364 ng/m³ for 15 identified PAHs, respectively. The arithmetic mean ± SD of mass concentrations of 24 detected elements ranged from 0.76 ± 0.91 ng/m³ (Co) to 1.31 ± 1.35 μg/m³ (Si). Our statistical analyses further illustrated that the high concentrations of PM₂.₅, BC, and most PAHs and metals, are significantly associated with nomadic village, poorer stove/chimney conditions and yak dung burning. The results from this study show that substantial HAP exposure is prevalent in Tibetan households and requires immediate actions to mitigate potential negative environmental health impacts. The observational data also revealed the possibility of other important sources (e.g. traffic and garbage burning) that have contributed to personal exposures. These findings improve our understanding of HAP exposure and potential health risks in Tibetan communities and will help inform strategies for reducing HAP in Tibetan households and beyond.
Показать больше [+] Меньше [-]Aromatic acids as biomass-burning tracers in atmospheric aerosols and ice cores: A review
2019
Wan, Xin | Kawamura, Kimitaka | Ram, Kirpa | Kang, Shichang | Loewen, Mark | Gao, Shaopeng | Wu, Guangming | Fu, Pingqing | Zhang, Yanlin | Bhattarai, Hemraj | Cong, Zhiyuan
Biomass burning (BB) is one of the largest sources of carbonaceous aerosols with adverse impacts on air quality, visibility, health and climate. BB emits a few specific aromatic acids (p-hydroxybenzoic, vanillic, syringic and dehydroabietic acids) which have been widely used as key indicators for source identification of BB-derived carbonaceous aerosols in various environmental matrices. In addition, measurement of p-hydroxybenzoic and vanillic acids in snow and ice cores have revealed the historical records of the fire emissions. Despite their uniqueness and importance as tracers, our current understanding of analytical methods, concentrations, diagnostic ratios and degradation processes are rather limited and scattered in literature. In this review paper, firstly we have summarized the most established methods and protocols for the measurement of these aromatic acids in aerosols and ice cores. Secondly, we have highlighted the geographical variability in the abundances of these acids, their diagnostic ratios and degradation processes in the environments. The review of the existing data indicates that the concentrations of aromatic acids in aerosols vary greatly with locations worldwide, typically more abundant in urban atmosphere where biomass fuels are commonly used for residential heating and/or cooking purposes. In contrast, their concentrations are lowest in the polar regions which are avoid of localized emissions and largely influenced by long-range transport. The diagnostic ratios among aromatic acids can be used as good indicators for the relative amounts and types of biomass (e.g. hardwood, softwood and herbaceous plants) as well as photochemical oxidation processes. Although studies suggest that the degradation processes of the aromatic acids may be controlled by light, pH and hygroscopicity, a more careful investigation, including closed chamber studies, is highly appreciated.
Показать больше [+] Меньше [-]Impacts of peat-forest smoke on urban PM2.5 in the Maritime Continent during 2012–2015: Carbonaceous profiles and indicators
2019
This study characterizes impacts of peat-forest (PF) smoke on an urban environment through carbonaceous profiles of >260 daily PM₂.₅ samples collected during 2012, 2013 and 2015. Organic carbon (OC) and elemental carbon (EC) comprising eight carbonaceous fractions are examined for four sample groups – non-smoke-dominant (NSD), smoke-dominant (SD), episodic PM₂.₅ samples at the urban receptor, and near-source samples collected close to PF burning sites. PF smoke introduced much larger amounts of OC than EC, with OC accounting for up to 94% of total carbon (TC), or increasing by up to 20 times in receptor PM₂.₅. SD PM₂.₅ at the receptor site and near-source samples have OC3 and EC1 as the dominant fractions. Both sample classes also exhibit char-EC >1.4 times of soot-EC, characterizing smoldering-dominant PF smoke, unlike episodic PM₂.₅ at the receptor site featuring large amounts of pyrolyzed organic carbon (POC) and soot-EC. Relative to the mean NSD PM₂.₅ at the receptor, increasing strength of transboundary PF smoke enriches OC3 and OC4 fractions, on average, by factors of >3 for SD samples, and >14 for episodic samples. A peat-forest smoke (PFS) indicator, representing the concentration ratio of (OC2+OC3+POC) to soot-EC, shows a temporal trend satisfactorily correlating with an organic marker (levoglucosan) of biomass burning. The PFS indicator systematically differentiates influences of PF smoke from source to urban receptor sites, with a progressive mean of 3.6, 13.4 and 20.1 for NSD, SD and episodic samples respectively at the receptor site, and 54.7 for the near-source PM₂.₅. A PFS indicator of ≥5.0 is proposed to determine dominant influence of transboundary PF smoke on receptor urban PM₂.₅ in the equatorial Asia with ∼90% confidence. Assessing >2900 hourly OCEC data in 2017–2018 supports the applicability of the PFS indicator to evaluate hourly impacts of PF smoke on receptor urban PM₂.₅ in the Maritime Continent.
Показать больше [+] Меньше [-]CO2, CO, hydrocarbon gases and PM2.5 emissions on dry season by deforestation fires in the Brazilian Amazonia
2019
Amaral, Simone Simões | Costa, Maria Angélica Martins | Soares Neto, Turibio Gomes | Costa, Marillia Pereira | Dias, Fabiana Ferrari | Anselmo, Edson | Santos, José Carlos dos | Carvalho, João Andrade de
The rate of deforestation in Brazil increased by 29% between 2015 and 2016, resulting in an increase of greenhouse gas emissions (GHG) of 9%. Deforestation fires in the Amazonia are the main source of GHG in Brazil. In this work, amounts of CO2, CO, main hydrocarbon gases and PM2.5 emitted during deforestation fires, under real conditions directly in Brazilian Amazonia, were determined. A brief discussion of the relationship between the annual emission of CO2 equivalent (CO2,eq) and Paris Agreement was conducted. Experimental fires were carried out in Western Amazonia (Candeias do Jamari, Rio Branco and Cruzeiro do Sul) and results were compared with a previous fire carried out in Eastern Amazonia (Alta Floresta). The average total fresh biomass on the ground before burning and the total biomass consumption were estimated to be 591 ton ha−1 and 33%, respectively. CO2, CO, CH4, and non–methane hydrocarbon (NMHC) average emission factors, for the four sites, were 1568, 140, 8, and 3 g kg−1 of burned dry biomass, respectively. PM2.5 showed large variation among the sites (0.9–16 g kg−1). Emissions per hectare of forest were estimated as 216,696 kg of CO2, 18,979 kg of CO, 1,058 kg of CH4, and 496 kg of NMHC. The average annual emission of equivalent CO2 was estimated as 301 ± 53 Mt year−1 for the Brazilian Amazonia forest. From 2013, the estimated CO2,eq showed a trend to increase in Amazon region. The present study is an alert and provides important information that can be used in the development of the public policies to control emissions and deforestation in the Brazilian Amazonia.
Показать больше [+] Меньше [-]Perchlorate behavior in the context of black carbon and metal cogeneration following fireworks emission at Oak Lake, Lincoln, Nebraska, USA
2019
Manish Kumar, | Snow, Daniel D. | Li, Yusong | Shea, Patrick J.
The imprints of fireworks displays on the adjacent water body were investigated from the perspective of cogeneration of black carbon, metals and perchlorate (ClO₄⁻). In particular, the mixing and dissipation of ClO₄⁻ were studied at Oak Lake, Lincoln, Nebraska, following fireworks displays in 2015 and 2016. Following the display, ClO₄⁻ concentration in the water increased up to 4.3 μg/L and 4.0 μg/L in 2015 and 2016, respectively. A first-order model generally provided a good fit to the measured perchlorate concentrations from which the rate of dissipation was estimated as 0.07 d⁻¹ in 2015 and 0.43 d⁻¹ in 2016. SEM images show imprints of soot and metal particles in aerosol samples. EDS analysis of the lake sediment confirmed the presence of Si, K, Ca, Zn and Ba, most of which are components of fireworks. The δ¹³C range of −7.55‰ to −9.19‰ in the lake water system closely resembles fire-generated carbon. Cogeneration of black carbon and metal with perchlorate was established, indicating that ClO₄⁻ is an excellent marker of fireworks or a burning event over all other analyzed parameters. Future microcosmic, aggregation and column-based transport studies on black carbon in the presence of perchlorate and metals under different environmental conditions will help in developing transport and fate models for perchlorate and black carbon particles.
Показать больше [+] Меньше [-]Individual exposure level following indoor and outdoor air pollution exposure in Dakar (Senegal)
2019
The consequences of indoor and outdoor air pollution on human health are of great concern nowadays. In this study, we firstly evaluated indoor and outdoor air pollution levels (CO, CO₂, NO, NO₂, PM₁₀) at an urban site in Dakar city center and at a rural site. Then, the individual exposure levels to selected pollutants and the variations in the levels of biomarkers of exposure were investigated in different groups of persons (bus drivers, traders working along the main roads and housemaids). Benzene exposure levels were higher for housemaids than for bus drivers and traders. High indoor exposure to benzene is probably due to cooking habits (cooking with charcoal), local practices (burning of incense), the use of cleaning products or solvent products which are important emitters of this compound. These results are confirmed by the values of S-PMA, which were higher in housemaids group compared to the others. Urinary 1-HOP levels were significantly higher for urban site housemaids compared to semirural district ones.Moreover, urinary levels of DNA oxidative stress damage (8-OHdG) and inflammatory (interleukin-6 and -8) biomarkers were higher in urban subjects in comparison to rural ones.The air quality measurement campaign showed that the bus interior was more polluted with PM₁₀, CO, CO₂ and NO than the market and urban or rural households. However, the interior of households showed higher concentration of VOCs than outdoor sites confirming previous observations of higher indoor individual exposure level to specific classes of pollutants.
Показать больше [+] Меньше [-]Impact of field biomass burning on local pollution and long-range transport of PM2.5 in Northeast Asia
2019
Uranishi, Katsushige | Ikemori, Fumikazu | Shimadera, Hikari | Kondo, Akira | Sugata, Seiji
Biomass burning (BB), such as, crop field burning during the post-harvest season, emits large amounts of air pollutants (e.g., PM₂.₅) that severely impact human health. However, it is challenging to evaluate the impact of BB on PM₂.₅ due to uncertainties in the size and location of sources as well as their temporal and spatial variability. This study focused on the impacts of BB on local pollution as well as the long-range transport of PM₂.₅ in Northeast Asia resulting from a huge field BB event in Northeast China during the autumn of 2014. Air quality simulations using the Community Multiscale Air Quality (CMAQ) model were conducted in the year 2014 over the horizontal domains covering Northeast Asia, including the Japanese mainland. In the baseline simulation (Base), field BB emissions were derived from Fire INventory from NCAR (FINN) v1.5 for the year 2014. The model reasonably captured the daily mean PM₂.₅ mass concentrations, however, it underestimated concentrations in autumn around Northeast China where irregular field BB following the harvest occurred frequently. To address the underestimation of emissions from BB sources in China, another simulation with boosted BB sources from cropland area (FINN20_crop) was conducted in addition to the Base simulation. The model performance of FINN20_crop was significantly improved and showed smaller biases and higher indices of agreement between simulated and observed values in comparison to those of Base. To evaluate long-range transport of PM₂.₅ from BB sources in China towards Japan, CMAQ with brute-force method (CMAQ/BFM)-estimated BB contributions for Base and FINN20_crop cases were compared with Positive Matrix Factorization (PMF)-estimated BB contributions at Noto Peninsula in Japan. The CMAQ/BFM-estimated contributions from FINN20_crop were in greater agreement with the PMF-estimated contributions. The comparison of BB contributions estimated by the two contrasting models also indicated large underestimations in the current BB emission estimates.
Показать больше [+] Меньше [-]