Уточнить поиск
Результаты 1-10 из 69
Obesogenic effect of erythromycin on Caenorhabditis elegans through over-eating and lipid metabolism disturbances Полный текст
2022
Luo, Zhili | Yu, Zhenyang | Yin, Daqiang
Environmental obesogens contributed significantly to the obesity prevalence. Recently, antibiotics joined the list of environmental obesogens, while the underlying mechanisms remained to be explored. In the present study, effects of erythromycin (ERY), one widely used macrolide antibiotic, were measured on C. elegans to investigate the obesogenic mechanism. Results showed that ERY at 0.1 μg/L significantly increased the fat content by 17.4% more than the control and also stimulated triacylglycerol (TAG) levels by 25.7% more than the control. Regarding the obesogenic mechanisms, ERY provoked over-eating by stimulation on the pharyngeal pumping and reduction on the satiety quiescence percentage and duration. Such effects were resulted from stimulation on the neurotransmitters including serotonin (5-HT), dopamine (DA) and acetylcholine (ACh). The nervous responses involved the up-regulation of Gsα (e.g., ser-7, gsa-1, acy-1 and kin-2) signaling pathway and the down-regulation of TGFβ (daf-7) but not via cGMP-dependent regulations (e.g., egl-4). Moreover, ERY stimulated the activities of fatty acid synthase (FAS) and glycerol-3-phosphateacyl transferases (GPAT) that catalyze lipogenesis, while ERY inhibited those of acyl-CoA synthetase (ACS), carnitine palmitoyl transferase (CPT) and acyl-CoA oxidase (ACO) that catalyze lipolysis. The unbalance between lipogenesis and lipolysis resulted in the fat accumulation which was consistent with up-regulation on mgl-1 and mgl-3 which are the down-steam of TGFβ regulation. Such consistence supported the close connection between nervous regulation and lipid metabolism. In addition, ERY also disturbed insulin which connects lipid with glucose in metabolism.
Показать больше [+] Меньше [-]A critical review of advances in reproductive toxicity of common nanomaterials to Caenorhabditis elegans and influencing factors Полный текст
2022
Yao, Yongshuai | Zhang, Ting | Tang, Meng
In recent decades, nanotechnology has rapidly developed. Therefore, there is growing concern about the potential environmental risks of nanoparticles (NPs). Caenorhabditis elegans (C. elegans) has been used as a powerful tool for studying the potential ecotoxicological impacts of nanomaterials from the whole animal level to single cell level, especially in the area of reproduction. In this review, we discuss the reproductive toxicity of common nanomaterials in C. elegans, such as metal-based nanomaterial (silver nanoparticles (NPs), gold NPs, zinc oxide NPs, copper oxide NPs), carbon-based nanomaterial (graphene oxide, multi-walled carbon nanotubes, fullerene nanoparticles), polymeric NPs, silica NPs, quantum dots, and the potential mechanisms involved. This insights into the toxic effects of existing nanomaterials on the human reproductive system. In addition, we summarize how the physicochemical properties (e.g., size, charge, surface modification, shape) of nanomaterials influence their reproductive toxicity. Overall, using C. elegans as a platform to develop rapid detection techniques and prediction methods for nanomaterial reproductive toxicity is expected to reduce the gap between biosafety evaluation of nanomaterials and their application.
Показать больше [+] Меньше [-]Polystyrene microbeads influence lipid storage distribution in C. elegans as revealed by coherent anti-Stokes Raman scattering (CARS) microscopy Полный текст
2022
Fueser, Hendrik | Pilger, Christian | Kong, Cihang | Huser, Thomas | Traunspurger, W. (Walter)
The exposure of Caenorhabditis elegans to polystyrene (PS) beads of a wide range of sizes impedes feeding, by reducing food consumption, and has been linked to inhibitory effects on the reproductive capacity of this nematode, as determined in standardized toxicity tests. Lipid storage provides energy for longevity, growth, and reproduction and may influence the organismal response to stress, including the food deprivation resulting from microplastics exposure. However, the effects of microplastics on energy storage have not been investigated in detail. In this study, C. elegans was exposed to ingestible sizes of PS beads in a standardized toxicity test (96 h) and in a multigeneration test (∼21 days), after which lipid storage was quantitatively analyzed in individual adults using coherent anti-Stokes Raman scattering (CARS) microscopy. The results showed that lipid storage distribution in C. elegans was altered when worms were exposed to microplastics in form of PS beads. For example, when exposed to 0.1-μm PS beads, the lipid droplet count was 93% higher, the droplets were up to 56% larger, and the area of the nematode body covered by lipids was up to 79% higher than in unexposed nematodes. The measured values tended to increase as PS bead sizes decreased. Cultivating the nematodes for 96 h under restricted food conditions in the absence of beads reproduced the altered lipid storage and suggested that it was triggered by food deprivation, including that induced by the dilutional effects of PS bead exposure. Our study demonstrates the utility of CARS microscopy to comprehensively image the smaller microplastics (<10 μm) ingested by nematodes and possibly other biota in investigations of the effects at the level of the individual organism.
Показать больше [+] Меньше [-]Chronic exposure to environmentally relevant levels of di(2-ethylhexyl) phthalate (DEHP) disrupts lipid metabolism associated with SBP-1/SREBP and ER stress in C. elegans Полный текст
2022
How, Chun Ming | Hsiu-Chuan Liao, Vivian
DEHP is commonly found in the environment, biota, food, and humans, raising significant health concerns. Whether developmental stage and exposure duration modify the obesogenic effects of DEHP is unclear, especially the underlying mechanisms by which chronic exposure to DEHP as well as its metabolites remain largely unknown. This study investigated the obesogenic effects of chronic DEHP exposure, with levels below environmentally-relevant amounts and provide the mechanism in Caenorhabditis elegans. We show that early-life DEHP exposure resulted in an increased lipid and triglyceride (TG) accumulation mainly attributed to DEHP itself, not its metabolite mono-2-ethylhexyl phthalate (MEHP). In addition, developmental stage and exposure timing influence DEHP-induced TG accumulation and chronic DEHP exposure resulted in the most significant effect. Analysis of fatty acid composition shows that chronic DEHP exposure altered fatty acid composition and TG, resulting in an increased ω-6/ω-3 ratio. The increased TG content by chronic DEHP exposure required lipogenic genes fat-6, fat-7, pod-2, fasn-1, and sbp-1. Moreover, chronic DEHP exposure induced XBP-1-mediated endoplasmic reticulum (ER) stress which might lead to up-regulation of sbp-1. This study suggests the possible involvement of ER stress and SBP-1/SREBP-mediated lipogenesis in chronic DEHP-induced obesogenic effects. Results from this study implies that chronic exposure to DEHP disrupts lipid metabolism, which is likely conserved across species due to evolutionary conservation of molecular mechanisms, raising concerns in ecological and human health.
Показать больше [+] Меньше [-]Responses of Caenorhabditis elegans to various surface modifications of alumina nanoparticles Полный текст
2021
Zhang, Shuang | Chu, Qiang | Zhang, Zhang | Xu, Yingfei | Mao, Xiali | Zhang, Mingkui
The surface modifications of nanoparticles (NPs), are well-recognized parameters that affect the toxicity, while there has no study on toxicity of Al₂O₃ NPs with different surface modification. Therefore, for the first time, this study pays attention to evaluating the toxicity and potential mechanism of pristine Al₂O₃ NPs (p-Al₂O₃), hydrophilic (w-Al₂O₃) and lipophilic (o-Al₂O₃) modifications of Al₂O₃ NPs both in vitro and in vivo. Applied concentrations of 10, 20, 40, 80,100 and 200 μg/mL for 24 h exposure on Caenorhabditis elegans (C. elegans), while 100 μg/mL of Al₂O₃ NPs significantly decreased the survival rate. Using multiple toxicological endpoints, we found that o-Al₂O₃ NPs (100 μg/mL) could induce more severe toxicity than p-Al₂O₃ and w-Al₂O₃ NPs. After uptake by C. elegans, o-Al₂O₃ NPs increased the intestinal permeability, easily swallow and further destroy the intestinal membrane cells. Besides, cytotoxicity evaluation revealed that o-Al₂O₃ NPs (100 μg/mL) are more toxic than p-Al₂O₃ and w-Al₂O₃. Once inside the cell, o-Al₂O₃ NPs could attack mitochondria and induce the over-production of reactive oxygen species (ROS), which destroy the intracellular redox balance and lead to apoptosis. Furthermore, the transcriptome sequencing and RT-qPCR data also demonstrated that the toxicity of o-Al₂O₃ NPs is highly related to the damage of cell membrane and the imbalance of intracellular redox. Generally, our study has offered a comprehensive sight to the adverse effects of different surface modifications of Al₂O₃ NPs on environmental organisms and the possible underlying mechanisms.
Показать больше [+] Меньше [-]Assessment on chronic and transgenerational toxicity of methamphetamine to Caenorhabditis elegans and associated aquatic risk through toxicity indicator sensitivity distribution (TISD) analysis Полный текст
2021
Wang, Zhenglu | Dai, Shuiping | Wang, Jinze | Du, Wei | Zhu, Lin
Evidence about the adverse effects of methamphetamine (METH) on invertebrates is scarce. Hence, C. elegans, a representative invertebrate model, was exposed to METH at environmental levels to estimate chronic and transgenerational toxicity. The results of chronic exposure were integrated into an underlying toxicity framework of METH in invertebrates (e.g., benthos) at environmentally relevant concentrations. The induction of cellular oxidative damage-induced apoptosis and fluctuation of ecologically important traits (i.e., feeding and locomotion) might be attributed by the activation of the longevity regulating pathway regulated by DAF-16/FOXO, and detoxification by CYP family enzymes. The adverse effects to the organism level included impaired viability and decreased fecundity. The results from transgenerational exposure elucidated the cumulative METH-induced damage in invertebrates. Finally, a new risk assessment method named toxicity indicator sensitivity distribution (TISD) analysis was proposed by combining multiple toxicity indicator test data (ECₓ) to derive the hazardous concentration for 10% indicators (C₁₀) of one species. The risk quotient (RQ) values calculated by measured environmental concentrations and C₁₀ in southern China, southeastern Australia, and the western US crossed the alarm line (RQ = 5), suggesting a need for long-term monitoring.
Показать больше [+] Меньше [-]Lipid metabolic response to polystyrene particles in nematode Caenorhabditis elegans Полный текст
2020
Yang, Yunhan | Shao, Huimin | Wu, Qiuli | Wang, Dayong
Nanoplastics can be used in various fields, such as personal care products. Nevertheless, the effect of nanoplastic exposure on metabolism and its association with stress response remain largely unclear. Using Caenorhabditis elegans as an animal model, we determined the effect of nanopolystyrene exposure on lipid metabolism and its association with the response to nanopolystyrene. Exposure (from L1-larave to adult day-3) to 100 nm nanopolystyrene (≥1 μg/L) induced severe lipid accumulation and increase in expressions of mdt-15 and sbp-1 encoding two lipid metabolic sensors. Meanwhile, we found that SBP-1 acted downstream of intestinal MDT-15 during the control of response to nanopolystyrene. Intestinal transcriptional factor SBP-1 activated two downstream targets, fatty acyl CoA desaturase FAT-6 and heat-shock protein HSP-4 (a marker of endoplasmic reticulum unfolded protein response (ER UPR)) to regulate nanopolystyrene toxicity. Both MDT-15 and SBP-1 were involved in the activation of ER-UPR in nanopolystyrene exposed nematodes. Moreover, SBP-1 regulated the innate immune response by activating FAT-6 in nanopolystyrene exposed nematodes. In the intestine, function of MDT-15 and SBP-1 in regulating nanopolystyrene toxicity was under the control of upstream signaling cascade (PMK-1-SKN-1) in p38 MAPK signaling pathway. Therefore, our data raised an important molecular basis for potential protective function of lipid metabolic response in nanopolystyrene exposed nematodes.
Показать больше [+] Меньше [-]Life stage-dependent toxicities of 1-ethyl-3-methylimidazolium bromide on Caenorhabditis elegans Полный текст
2020
Liu, Hong | Mo, Lingyun | Hou, Meifang | Zhang, Jing
Ionic liquids (ILs) are considered as extracting solvents in soil remediation. However, they can be pollutants themselves, and their own toxicities are of concerns. Notably, organisms were exposed to pollutants at random life stages in actual environmental exposure scenario, which is different from the set-up of one uniform life stage in usual experiment designs. The influence of life stages on ILs toxicities will provide essential information on their actual environmental risks. In the present study, effects of 1-ethyl-3-methylimidazolium bromide ([C₂mim]Br) were measured on C. elegans with egg exposure and adult exposure. In egg exposure, [C₂mim]Br increased the lifespan, stimulated initial reproduction and inhibited the total reproduction. Biochemical indices including oxidative stress, antioxidant responses and oxidative damage were further measured to explore the toxicity mechanisms. Results showed that [C₂mim]Br significantly stimulated O₂⁻· as the oxidative stress and superoxide dismutase (SOD) as the antioxidant defense. In adult exposure, [C₂mim]Br inhibited initial reproduction, total reproduction and lifespan. Biochemical results showed that [C₂mim]Br significantly stimulated H₂O₂ and oxidized glutathione (GSSG). The overall findings demonstrated that [C₂mim]Br caused life stage-dependent toxicities on C. elegans. Future studies are still needed for the detailed mechanisms.
Показать больше [+] Меньше [-]Early life exposure to di(2-ethylhexyl)phthalate causes age-related declines associated with insulin/IGF-1-like signaling pathway and SKN-1 in Caenorhabditis elegans Полный текст
2019
How, Chun Ming | Yen, Pei-Ling | Wei, Chia-Cheng | Li, Shang-Wei | Liao, Vivian Hsiu-Chuan
Di(2-ethylhexyl)phthalate (DEHP) is an ubiquitous and emerging contaminant that is widely present in food, agricultural crop, and the environment, posing a potential risk to human health. This study utilized the nematode Caenorhabditis elegans to decipher the toxic effects of early life exposure to DEHP on aging and its underlying mechanisms. The results showed that exposure to DEHP at 0.1 and 1.5 mg/L inhibited locomotive behaviors. In addition, DEHP exposure significantly shortened the mean lifespan of the worms and further adversely affected pharyngeal pumping rate and defecation cycle in aged worms. Moreover, DEHP exposure also further enhanced accumulation of age-related biomarkers including lipofuscin, lipid peroxidation, and intracellular reactive oxygen species in aged worms. In addition, exposure to DEHP significantly suppressed gene expression of hsp-16.1, hsp-16.49, and hsp-70 in aged worms. Further evidences showed that mutation of genes involved in insulin/IGF-1-like signaling (IIS) pathway (daf-2, age-1, pdk-1, akt-1, akt-2, and daf-16) restored lipid peroxidation accumulation upon DEHP exposure in aged worms, whereas skn-1 mutation resulted in enhanced lipid peroxidation accumulation. Therefore, IIS and SKN-1 may serve as an important molecular basis for DEHP-induced age-related declines in C. elegans. Since IIS and SKN-1 are highly conserved among species, the age-related declines caused by DEHP exposure may not be exclusive in C. elegans, leading to adverse human health consequences due to widespread and persistent DEHP contamination in the environment.
Показать больше [+] Меньше [-]Tris(1,3-dichloro-2-propyl) phosphate accelerated the aging process induced by the 4-hydroxynon-2-enal response to reactive oxidative species in Caenorhabditis elegans Полный текст
2019
Wang, Chen | An, Jing | Bai, Yingchen | Li, Hui | Chen, Haibo | Ou, Dong | Liu, Yongdi
Tris(1,3-dichloro-2-propyl) phosphate (TDCPP) has been frequently detected in environmental media and biological samples. However, knowledge of its adverse health consequences is limited. In the current study, Caenorhabditis elegans (C. elegans, L1 larvae) were exposed to TDCPP at environmentally relevant concentrations (control, 0.1, 1, 100 and 1000 μg L⁻¹) for 72 h to explore any association between TDCPP and the aging process. Some of the degenerative age-related indicators were observed, including locomotion behaviors and lifespan. As crucial biomarkers of aging, the accumulation of lipofuscin, and lipid peroxidation (LPO) products exemplified by 4-hydroxynon-2-enal (4-HNE) were detected. This product forms as a result of oxidative stress, as confirmed by an N-acetyl-L-cysteine (NAC) pharmacological assay. Moreover, a significant increase in reactive oxide species (ROS) production in a dose-dependent manner using a fluorescent probe was observed. For the underlying molecular mechanism of the above aging phenotypes, significantly upregulated transcription of genes related to antioxidant systems, especially a subset of glutathione S-transferase (gst-5, gst-6, gst-9, gst-10, gst-19, gst-24, gst-26, gst-29, gst-33, and gst-38), was found by RNA-Seq and further confirmed by RT-qPCR. The elevated glutathione S-transferase (GST) was attributed to the significant increase in 4-HNE because mutations in gst-5 and gst-24 inhibited the conjugation of GSTs with 4-HNE. Therefore, GST play an indispensable role in the detoxification process of TDCPP exposure and further confirmed LPO accumulation at the molecular mechanism level. In conclusion, TDCPP accelerated the aging process induced by the LPO products, 4-HNE, response to reactive oxidative species in C. elegans.
Показать больше [+] Меньше [-]