Уточнить поиск
Результаты 1-4 из 4
Microscale and molecular analyses of river biofilm communities treated with microgram levels of cerium oxide nanoparticles indicate limited but significant effects
2020
Lawrence, John R. | Paule, Armelle | Swerhone, George D.W. | Roy, Julie | Grigoryan, Alexander A. | Dynes, James J. | Chekabab, Samuel M. | Korber, Darren R.
Cerium oxide (CeO2) nanoparticles are used as in-fuel catalysts and in manufacturing processes, creating a potential for release to aquatic environments. Exposures at 1 and 10 μg/L CeO2-nanoparticles were made to assess effects during the development of river biofilm communities. Scanning transmission x-ray microscopy (STXM) indicated extensive sorption of nanoparticles to the community and co-localization with lipid moieties. Following 8 weeks of development, polycarbonate coupons were removed from the reactors and used for molecular analyses, denaturing gradient gel electrophoresis analysis (DGGE-16S rRNA) and 16S rRNA amplicon sequencing. Microscopic imaging of the biofilm communities (bacterial, photosynthetic biomass, exopolymer composition, thickness, protozoan numbers), as well as carbon substrate utilization fingerprinting was performed. There was a trend toward reduced photosynthetic biomass, but no significant effects of CeO2 exposure were found on photosynthetic and bacterial biomass or biofilm thickness. Sole carbon source utilization analyses indicated increased utilization of 10 carbon sources in the carbohydrate, carboxylic acid and amino acids categories related to CeO2 exposures; however, predominantly, no significant effects (p < 0.05) were detected. Measures of microbial diversity, lectin binding affinities of exopolymeric substances and results of DGGE analyses, indicated significant changes to community composition (p < 0.05) with CeO2 exposure. Increased binding of the lectin Canavalia ensiformis was observed, consistent with changes in bacterial-associated polymers. Whereas, no significant changes were observed in binding to residues associated with algal and cyanobacterial exopolymers. 16S rRNA amplicon sequencing of community DNA indicated changes in diversity and shifts in community composition; however, these did not trend with increasing CeO2 exposure. Counting of protozoans in the biofilm communities indicated no significant effects on this trophic level. Thus, based on biomass and functional measures, CeO2 nanoparticles did not appear to have significant effects; however, there was evidence of selection pressure resulting in significant changes in microbial community composition.
Показать больше [+] Меньше [-]Vermicompost dose and mycorrhization determine the efficiency of copper phytoremediation by Canavalia ensiformis
2018
Santana, NatieloAlmeida | Rabuscke, CarolineMaria | Soares, ValdemirBittencourt | Soriani, HildaHildebrand | Nicoloso, FernandoTeixeira | Jacques, RodrigoJosemar Seminoti
The phytoremediation of copper (Cu)-contaminated sandy soils can be influenced by the addition of vermicompost to the soil and the mycorrhization of plants. The objective of this study was to evaluate the effects of inoculation with the mycorrhizal fungus Rhizophagus clarus and the addition of different doses of bovine manure vermicompost on the phytoremediation of a sandy soil with a high Cu content using Canavalia ensiformis. Soil contaminated with 100 mg kg⁻¹ Cu received five doses of vermicompost and was cultivated with C. ensiformis, with and without inoculation with mycorrhizal fungus, and the Cu and nutrients in the soil and soil solution were evaluated. The concentrations of Cu and other nutrients and the biomass and Cu phytotoxicity in the plants were quantified by gauging the photochemical efficiency, concentration of photosynthetic pigments and activity of oxidative stress enzymes. The vermicompost increased the soil pH and nutrient concentrations and reduced the Cu content of the solution. When the vermicompost was applied at a dose equivalent to 80 mg phosphorus (P) kg⁻¹, the phytoextraction efficiency was higher, but the phytostabilization efficiency was higher for vermicompost doses of 10 and 20 mg P kg⁻¹. The presence of mycorrhizal fungi increased Cu phytostabilization, especially at vermicompost doses of 10 and 20 mg P kg⁻¹. The use of vermicompost at low doses and inoculation with mycorrhizal fungi increase the phytostabilization potential of C. ensiformis in sandy soil contaminated by Cu.
Показать больше [+] Меньше [-]Development of Canavalia ensiformis in soil contaminated with diesel oil
2017
Balliana, A. G. | Moura, B. B. | Inckot, R. C. | Bona, C.
Hydrocarbons are the main components of diesel oil and are toxic for the majority of plants. A few plant species, known as phytoremediators, are tolerant of hydrocarbons and can survive the stressful conditions of soils contaminated with diesel oil. Canavalia ensiformis, a plant species that is well distributed throughout the tropics, possesses advantageous features for a potential resistance to soil contamination, such as fast growth and a deep root system. Thus, the aim of the present study was to evaluate the tolerance of C. ensiformis when it was exposed to soil contaminated with diesel oil. Seedlings were subjected to two treatments: contaminated soil (CS) (95 ml/kg of diesel oil) and non-contaminated soil (NCS) for a period of 30 days; its growth, morphology, anatomy, and physiology were analyzed. Despite the high level of toxicity, some individuals were able to survive in CS. These plants had root apical meristems with high levels of mitosis and were able to issue new roots with more developed aerenchyma tissue. Because the surviving plants presented no marks of cellular damage on the organs formed (root and leaves) during the experiment, the species capacity of growth on CS was confirmed. Although, long-term field experiments, applying different contaminant concentrations, should be considered to infer about the species resistance and use as phytoremediator.
Показать больше [+] Меньше [-]Cadmium, lead, and zinc mobility and plant uptake in a mine soil amended with sugarcane straw biochar
2015
Puga, A. P. | Abreu, C. A. | Melo, L. C. A. | Paz-Ferreiro, J. | Beesley, L.
Accumulation of heavy metals in unconsolidated soils can prove toxic to proximal environments, if measures are not taken to stabilize soils. One way to minimize the toxicity of metals in soils is the use of materials capable of immobilizing these contaminants by sorption. Biochar (BC) can retain large amounts of heavy metals due to, among other characteristics, its large surface area. In the current experiment, sugarcane-straw-derived biochar, produced at 700 °C, was applied to a heavy-metal-contaminated mine soil at 1.5, 3.0, and 5.0 % (w/w). Jack bean and Mucuna aterrima were grown in pots containing a mine contaminated soil and soil mixed with BC. Pore water was sampled to assess the effects of biochar on zinc solubility, while soils were analyzed by DTPA extraction to confirm available metal concentrations. The application of BC decreased the available concentrations of Cd, Pb, and Zn in the mine contaminated soil leading to a consistent reduction in the concentration of Zn in the pore water. Amendment with BC reduced plant uptake of Cd, Pb, and Zn with the jack bean uptaking higher amounts of Cd and Pb than M. aterrima. This study indicates that biochar application during mine soil remediation could reduce plant concentrations of heavy metals. Coupled with this, symptoms of heavy metal toxicity were absent only in plants growing in pots amended with biochar. The reduction in metal bioavailability and other modifications to the substrate induced by the application of biochar may be beneficial to the establishment of a green cover on top of mine soil to aid remediation and reduce risks.
Показать больше [+] Меньше [-]