Уточнить поиск
Результаты 1-10 из 58
Heavy Metal Determination in Atmospheric Deposition and Other Fluxes in Northern France Agrosystems Полный текст
2004
Azimi, Sam | Cambier, Philippe | Lecuyer, Isabelle | Thevenot, Daniel, R. | Centre d'Enseignement et de Recherche Eau Ville Environnement (CEREVE) ; AgroParisTech-École des Ponts ParisTech (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) | Unité de Sciences du Sol ; Institut National de la Recherche Agronomique (INRA)
International audience | The aim of this study is to assess the annual balance of the fluxes of Cd, Cu, Ni, Pb and Zn within different cropping systems, in an experimental site located near Versailles, France. Four fluxes through the cultivated horizon were considered to assess the annual heavy metal balance in these systems: 1) atmospheric depositions, 2) fertilisers as inputs, 3) crops and 4) leaching water as outputs. The water mass flow was estimated with a model (CERES) while the other parameters were actually measured through field sampling. Some large uncertainties are related to analytical detection limits, specially for Pb which presents very low concentrations in nitrogen fertilisers, in crops and in soil solution. Cd was also close to the detection limits in atmospheric deposition and in soil water, and Zn could not be analysed in soil solution. Nevertheless, the following trends clearly appeared: firstly, atmospheric deposition is the major input way of Cu, Ni, Pb and Zn in the soil, whatever the cropping system, whereas Cd is introduced mainly by fertilisers. Secondly, the uptake of heavy metal by wheat is generally larger than by a pea culture, except for Ni. Finally, the global pattern shows an accumulation of Cd, Ni and Pb in the cultivated horizon while Cu decreased. The annual balances, during the cropping year 2001–2002, represented about 0.33, −0.024, 0.014 and 0.014% of the actual stocks in the cultivated horizon, of Cd, Cu, Ni, and Pb, respectively.
Показать больше [+] Меньше [-]Heavy Metal Determination in Atmospheric Deposition and Other Fluxes in Northern France Agrosystems Полный текст
2004
Azimi, Sam | Cambier, Philippe | Lecuyer, Isabelle | Thevenot, Daniel, R. | Centre d'Enseignement et de Recherche Eau Ville Environnement (CEREVE) ; AgroParisTech-École nationale des ponts et chaussées (ENPC)-Université Paris-Est Créteil Val-de-Marne - Paris 12 (UPEC UP12) | Unité de Sciences du Sol ; Institut National de la Recherche Agronomique (INRA)
International audience | The aim of this study is to assess the annual balance of the fluxes of Cd, Cu, Ni, Pb and Zn within different cropping systems, in an experimental site located near Versailles, France. Four fluxes through the cultivated horizon were considered to assess the annual heavy metal balance in these systems: 1) atmospheric depositions, 2) fertilisers as inputs, 3) crops and 4) leaching water as outputs. The water mass flow was estimated with a model (CERES) while the other parameters were actually measured through field sampling. Some large uncertainties are related to analytical detection limits, specially for Pb which presents very low concentrations in nitrogen fertilisers, in crops and in soil solution. Cd was also close to the detection limits in atmospheric deposition and in soil water, and Zn could not be analysed in soil solution. Nevertheless, the following trends clearly appeared: firstly, atmospheric deposition is the major input way of Cu, Ni, Pb and Zn in the soil, whatever the cropping system, whereas Cd is introduced mainly by fertilisers. Secondly, the uptake of heavy metal by wheat is generally larger than by a pea culture, except for Ni. Finally, the global pattern shows an accumulation of Cd, Ni and Pb in the cultivated horizon while Cu decreased. The annual balances, during the cropping year 2001–2002, represented about 0.33, −0.024, 0.014 and 0.014% of the actual stocks in the cultivated horizon, of Cd, Cu, Ni, and Pb, respectively.
Показать больше [+] Меньше [-]Screening and validation of biomarkers for cadmium-induced liver injury based on targeted bile acid metabolomics Полный текст
2022
Tian, Meng | Yan, Jun | Zhang, Honglong | Wei, Yuhui | Zhang, Mingtong | Rao, Zhi | Zhang, Mingkang | Wang, Haiping | Wang, Yanping | Li, Xun
Although cadmium (Cd) is a toxic heavy metal that reportedly causes liver injury, few studies have investigated biomarkers of Cd-induced liver injury. The purpose of this study is to investigate the role of bile acid (BA) in Cd-induced liver injury and determine reliable and sensitive biochemical parameters for the diagnosis of Cd-induced liver injury. In this study, 48 Sprague-Dawley rats were randomly divided into six groups and administered either normal saline or 2.5, 5, 10, 20, and 40 mg/kg/d cadmium chloride for 12 weeks. A total of 403 subjects living in either a control area (n = 135) or Cd polluted area (n = 268) of Dongdagou-Xinglong (DDGXL) cohort were included, a population with long-term low Cd exposure. The BA profiles in rats' liver, serum, caecal contents, faeces, and subjects' serum were detected using high-performance liquid chromatography-tandem mass spectrometry (HPLC–MS/MS). Changes in rats' and subjects' liver injury indices, rats' liver pathological degeneration, and rats' liver and subjects’ blood Cd levels were also measured. Cadmium exposure caused cholestasis and an increase in toxic BAs, leading to liver injury in rats. Among them, glycoursodeoxycholic acid (GUDCA), glycolithocholic acid (GLCA), taurolithocholic acid (TLCA), and taurodeoxycholate acid (TDCA) are expected to be potential biomarkers for the early detect of Cd-induced liver injury. Serum BAs can be used to assess Cd-induced liver injury as a simple, feasible, and suitable method in rats. Serum GUDCA, GLCA, TDCA, and TLCA were verified to be of value to evaluate Cd-induced liver injury and Cd exposure in humans. These findings provided evidence for screening and validation of additional biomarkers for Cd-induced liver injury based on targeted BA metabolomics.
Показать больше [+] Меньше [-]Microbial interactions enhanced environmental fitness and expanded ecological niches under dibutyl phthalate and cadmium co-contamination Полный текст
2022
Wang, Xuejun | Wu, Hao | Dai, Chuhan | Wang, Xiaoyu | Wang, Lvjing | Xu, Jianming | Lu, Zhenmei
Co-contamination of organic pollutants and heavy metals is universal in the natural environment. Dibutyl phthalate (DBP), a typical plasticizer, frequently coexists with cadmium (Cd) in nature. However, little attention has been given to the impacts of co-contamination by DBP and Cd on microbial communities or the responses of microbes. To address this, a microcosm experiment was conducted by supplying the exogenous DBP-degrading bacterium Glutamicibacter nicotianae ZM05 to investigate the interplay among DBP-Cd co-contamination, the exogenous DBP-degrading bacterium G. nicotianae ZM05, and indigenous microorganisms. To adapt to co-contamination stress, microbial communities adjust their diversity, interactions, and functions. The stability of the microbial community decreased under co-contamination, as evidenced by lower diversity, simpler network, and fewer ecological niches. Microbial interactions were strengthened, as evidenced by enriched pathways related to microbial communications. Meanwhile, interactions between microorganisms enhanced the environmental fitness of the exogenous DBP-degrading bacterium ZM05. Based on co-occurrence network prediction and coculture experiments, metabolic interactions between the non-DBP-degrading bacterium Cupriavidus metallidurans ZM16 and ZM05 were proven. Strain ZM16 utilized protocatechuic acid, a DBP downstream metabolite, to relieve acid inhibition and adsorbed Cd to relieve toxic stress. These findings help to explain the responses of bacterial and fungal communities to DBP-Cd co-contamination and provide new insights for the construction of degrading consortia for bioremediation.
Показать больше [+] Меньше [-]Physical activity reduces the role of blood cadmium on depression: A cross-sectional analysis with NHANES data Полный текст
2022
Tian, Xiaoyu | Xue, Baode | Wang, Bo | Lei, Ruoyi | Shan, Xiaobing | Niu, Jingping | Luo, Bin
Cadmium (Cd) exposure is recognized as an important risk factor for psychological health, but suitable physical activity may relieve depression. However, it remains unknown whether physical activity (PA) can reduce the effect of cadmium exposure on depression. Therefore, a cross-sectional data from National Health and Nutrition Examination Survey (NHANES) 2015–2018 was used. The Nine-item Patient Health Questionnaire (PHQ-9) was used to assess depression among the participants. PA was calculated according to the metabolic equivalent (MET), weekly frequency, and duration of each activity. Logistic regression and restricted cubic spline models were used to examine the associations of Cd and depression. A total of 5560 adults aged 20 years and above were finally included in this study. The results indicated a positive correlation between blood Cd and depression. The multivariate-adjusted ORs (95% CI) of the highest quartile were 2.290 (1.754–2.990) for depression, which was still significant after controlling other heavy metals (P < 0.05). Under Cd exposure, the high intensity of physical activity group had the lowest risk of depression (OR = 2.226, 95%CI: 1.447–3.425), while the group with no physical activity had the highest risk (OR = 2.443, 95%CI: 1.382–4.318). Our results indicate that inner Cd exposure may be a risk factor for depression, and physical activity can moderate this relationship to some degree.
Показать больше [+] Меньше [-]Size-dependent impact of polystyrene microplastics on the toxicity of cadmium through altering neutrophil expression and metabolic regulation in zebrafish larvae Полный текст
2021
Qin, Li | Duan, Zhenghua | Cheng, Haodong | Wang, Yudi | Zhang, Haihong | Zhu, Zhe | Wang, Lei
Insufficient evidence exists regarding the visible physiological toxic endpoints of MPs exposures on zebrafish larvae due to their small sizes. Herein, the impacts of micro-polystyrene particles (μ-PS) and 100 nm polystyrene particles (n-PS) on the toxicity of cadmium (Cd) through altering neutrophil expressions were identified and quantified in the transgenic zebrafish (Danio rerio) larvae Tg(lyz:DsRed2), and the effects were size-dependent. When exposed together with μ-PS, the amount of neutrophils in Cd treated zebrafish larvae decreased by 25.56% through reducing Cd content in the larvae. By contrast, although n-PS exposure caused lower Cd content in the larvae, the expression of neutrophils under their combined exposure remained high. The mechanism of immune toxicity was analyzed based on the results of metabonomics. n-PS induced high oxidative stress in the larvae, which promoted taurine metabolism and unsaturated fatty biosynthesis in n-PS + Cd treatment. This observation was accordance with the significant inhibition of the activities of superoxide dismutase and catalase enzymes detected in their combined treatment. Moreover, n-PS promoted the metabolic pathways of catabolic processes, amino acid metabolism, purine metabolism, and steroid hormone biosynthesis in Cd treated zebrafish larvae. Nanoplasctis widely coexist with other pollutants in the environment at relatively low concentrations. We conclude that more bio-markers of immune impact should be explored to identify their toxicological mechanisms and mitigate the effects on the environment.
Показать больше [+] Меньше [-]Mediation effects of different sulfur forms on solubility, uptake and accumulation of Cd in soil-paddy rice system induced by organic carbon and liming Полный текст
2021
Yao, Aijun | Liu, Ying | Sitong, | Liu, Chong | Tang, Yetao | Wang, Shizhong | Huang, Xiongfei | Qiu, Rongliang
Liming is a safe and effective remediation practice for Cd contaminated acid paddy soil. The fate of Cd can also be strongly influenced by redox chemistry of sulfur. But it is unclear if, to what extent and how the combination of liming and sulfur mediation could further control Cd uptake by paddy rice. A rice cultivation pot experiment was conducted to evaluate the impact of different sulfur forms (S⁰ and SO₄²⁻ in K₂SO₄) on the solubility, uptake and accumulation of Cd in the soil-paddy rice system and how liming and reducing organic carbon mediate the process. Results showed that under neutral soil circumstances achieved by liming, co-application of K₂SO₄ and glucose significantly reduced brown rice Cd by 33%, compared to liming alone. They made it more readily for Cd²⁺ to be precipitated into CdS/CdS₂ or co-precipitate with newly formed FeS/FeS₂/iron oxides. The higher pH balancing capability of K₂SO₄ as well as liming kept the newly formed sulfide or iron containing minerals negatively charged to be more prone to adsorb Cd²⁺, that kept the porewater Cd²⁺ the lowest among all the treatments. Individual K₂SO₄ showed significant promoting effect on soil Cd solubility due to SO₄²⁻ chelation effect. Furthermore, K₂SO₄ had much weaker inhibiting effect on Cd translocation from root to grain, it showed no significant attenuating effect on brown rice Cd. S⁰ containing treatments displayed weaker or no attenuating effect on brown rice Cd due to its strong soil acidification effect. On the basis of liming, organic carbon induced sulfur (K₂SO₄) mediation showed great application potential for safe production on large areas of acid paddy soil contaminated by Cd.
Показать больше [+] Меньше [-]Cadmium promotes breast cancer cell proliferation, migration and invasion by inhibiting ACSS2/ATG5-mediated autophagy Полный текст
2021
Liang, Yidan | Pi, Huifeng | Liao, Lingzhi | Tan, Miduo | Deng, Ping | Yue, Yang | Xi, Yu | Tian, Li | Xie, Jia | Chen, Mengyan | Luo, Yan | Chen, Mingliang | Wang, Liting | Yu, Zhengping | Zhou, Zhou
Cadmium (Cd), which is considered a carcinogenic metal, promotes breast cancer (BC) progression, but the precise mechanism remains unclear. Herein, MCF-7 and T47-D cells were treated with 0.1, 1, and 10 μM cadmium chloride (CdCl₂) for 24, 48 and 72 h. In our study, Cd exposure significantly accelerated the proliferation, migration and invasion of MCF-7 and T47-D cells. Notably, Cd inhibited autophagic flux by suppressing ATG5-dependent autophagosome formation but had no significant effect on autophagosome-lysosome fusion and lysosomal function. The genetic enhancement of autophagy through ATG5 overexpression suppressed the Cd-mediated increases in proliferation, migration and invasion, which indicated a carcinogenic role of autophagy impairment in Cd-exposed BC cells. GSEA and GeneMANIA were utilized to demonstrate that the Cd-induced decrease in ACSS2 expression mechanistically inhibited ATG5-dependent autophagy in BC cells. Importantly, ACSS2 overexpression increased the level of H3K27 acetylation in the promoter region of ATG5, and this result maintained autophagic flux and abolished the Cd-induced increases in proliferation, migration and invasion. We also verified that the expression of ACSS2 in BC tissues was low and positively related to ATG5 expression. These findings indicated that the promoting effect of Cd on BC cell proliferation, migration and invasion through the impairment of ACSS2/ATG5-dependent autophagic flux suggests a new mechanism for BC cell proliferation and metastasis stimulated by Cd.
Показать больше [+] Меньше [-]The role of Nrf2 in mitigating cadmium-induced oxidative stress of Marsupenaeus japonicus Полный текст
2021
Ren, Xianyun | Xu, Yao | Yu, Zhenxing | Mu, Cuimin | Liu, Ping | Li, Jian
Nuclear factor-erythroid 2-related factor-2 (Nrf2) is an important modulator of cellular responses against Cd in mammalian cells. However, whether such modulation is conserved in Marsupenaeus japonicas remains unknown.In our study, the shrimps were injected with dsRNA targeting Nrf2 at 4 μg g⁻¹ body weight (b.w.) or sulforaphane (SFN) at 5 μg g⁻¹ b.w., and then were exposed to 40 mg L⁻¹ CdCl₂ for 48 h. After Nrf2 knockdown, the Cd content increased, but decreased in the SFN group. This suggested that Nrf2 could promote Cd excretion. A terminal deoxynulceotidyl transferase nick-end-labeling (TUNEL) assay revealed that the Nrf2 knockdown increased the number of apoptotic cells in M. japonicas, while SFN decreased the number of apoptotic cells. After Nrf2 knockdown, the total antioxidant capacity (T-AOC), superoxide dismutase (Sod) activity, and related gene expression decreased significantly, while the malondialdehyde (MDA) content increased remarkably. By contrast, SFN injection alleviated the oxidative stress, as evidenced by increased T-AOC, Sod activity, sod mRNA expression and a reduced MDA content. Similarly, detoxification related enzyme activities (ethoxyresorufin O-deethylase and glutathione-S-transferase (GST)) and their corresponding gene expressions (cyp3a (cytochrome P450 family 3 subfamily A) and gst) were suppressed in the ds-Nrf2 injection group, while they were elevated in the SFN group. In addition, ds-Nrf2 activated mitochondrial apoptotic pathway, as evidenced the mRNA and protein levels of caspase-3, Bcl2 associated X protein (Bax), and p53, while SFN treatment suppressed them. These results displayed that in M. japonicus Cd-induced cellular oxidative damage probably acts via the Nrf2 pathway.
Показать больше [+] Меньше [-]Biofilm influenced metal accumulation onto plastic debris in different freshwaters Полный текст
2021
Liu, Zhilin | Adyel, Tanveer M. | Miao, Lingzhan | You, Guoxiang | Liu, Songqi | Hou, Jun
Microbial biofilms can rapidly colonize plastic debris in aquatic environments and subsequently, accumulate chemical pollutants from the surrounding water. Here, we studied the microbial colonization of different plastics, including polyethylene terephthalate (PET), polypropylene (PP), polyvinyl chloride (PVC), and polyethylene (PE) exposed in three freshwater systems (the Qinhuai River, the Niushoushan River, and Donghu Lake) for 44 days. We also assessed the biofilm mass and associated metals attached to plastics. The plastics debris characteristics, such as contact angle and surface roughness, greatly affected the increased biofilm biomass. All types of metal accumulation onto the plastic substrate abundances significantly higher than the concentrations of heavy metal in the water column, such as Ba (267.75 μg/g vs. 42.12 μg/L, Donhu Lake), Zn (254 μg/g vs. 0.023 μg/L the Qinhuai River), and Cr (93.75 μg/g vs. 0.039 μg/L, the Niushoushan River). Compared with other metals, the heavy metal Ba, Cr and Zn accumulated easily on the plastic debris (PET, PP, PVC, and PE) at all incubation sites. Aquatic environmental factors (total nitrogen, total phosphorus, and suspended solids concentrations) largely shaped metal accumulation onto plastic debris compared with plastic debris properties.
Показать больше [+] Меньше [-]