Уточнить поиск
Результаты 1-10 из 37
Exposure to fipronil induces cell cycle arrest, DNA damage, and apoptosis in porcine trophectoderm and endometrial epithelium, leading to implantation defects during early pregnancy
2021
Park, Wonhyoung | Lim, Whasun | Song, Gwonhwa
Fipronil, a phenyl-pyrazole insecticide, has a wide range of uses, from agriculture to veterinary medicine. Due to its large-scale applications, the risk of environmental and occupational exposure and bioaccumulation raises concerns. Moreover, relatively little is known about the intracellular mechanisms of fipronil in trophoblasts and the endometrium involved in implantation. Here, we demonstrated that fipronil reduced the viability of porcine trophectoderm and luminal epithelial cells. Fipronil induced cell cycle arrest at the sub-G1 phase and apoptotic cell death through DNA fragmentation and inhibition of DNA replication. These reactions were accompanied by homeostatic changes, including mitochondrial depolarization and cytosolic calcium depletion. In addition, we found that exposure to fipronil compromised the migration and implantation ability of pTr and pLE cells. Moreover, alterations in PI3K-AKT and MAPK-ERK1/2 signal transduction were observed in fipronil-treated pTr and pLE cells. Finally, the antiproliferative and apoptotic effects of fipronil were also demonstrated in 3D cell culture conditions. In summary, our results suggest that fipronil impairs implantation potentials in fetal trophectoderm and maternal endometrial cells during early pregnancy.
Показать больше [+] Меньше [-]Assessment of lung cell toxicity of various gasoline engine exhausts using a versatile in vitro exposure system
2018
Bisig, Christoph | Comte, Pierre | Güdel, Martin | Czerwiński, Janusz | Mayer, Andreas | Müller, Loretta | Petri-Fink, Alke | Rothen-Rutishauser, Barbara
Adverse effect studies of gasoline exhaust are scarce, even though gasoline direct injection (GDI) vehicles can emit a high number of particles.The aim of this study was to conduct an in vitro hazard assessment of different GDI exhausts using two different cell culture models mimicking the human airway. In addition to gasoline particle filters (GPF), the effects of two lubrication oils with low and high ash content were assessed, since it is known that oils are important contributors to exhaust emissions.Complete exhausts from two gasoline driven cars (GDI1 and GDI2) were applied for 6 h (acute exposure) to a multi-cellular human lung model (16HBE14o-cell line, macrophages, and dendritic cells) and a primary human airway model (MucilAir™). GDI1 vehicle was driven unfiltered and filtered with an uncoated and a coated GPF. GDI2 vehicle was driven under four settings with different fuels: normal unleaded gasoline, 2% high and low ash oil in gasoline, and 2% high ash oil in gasoline with a GPF. GDI1 unfiltered was also used for a repeated exposure (3 times 6 h) to assess possible adverse effects.After 6 h exposure, no genes or proteins for oxidative stress or pro-inflammation were upregulated compared to the filtered air control in both cell systems, neither in GDI1 with GPFs nor in GDI2 with the different fuels. However, the repeated exposure led to a significant increase in HMOX1 and TNFa gene expression in the multi-cellular model, showing the responsiveness of the system towards gasoline engine exhaust upon prolonged exposure.The reduction of particles by GPFs is significant and no adverse effects were observed in vitro during a short-term exposure. On the other hand, more data comparing different lubrication oils and their possible adverse effects are needed. Future experiments also should, as shown here, focus on repeated exposures.
Показать больше [+] Меньше [-]Respiratory hazard assessment of combined exposure to complete gasoline exhaust and respirable volcanic ash in a multicellular human lung model at the air-liquid interface
2018
Tomašek, Ines | Horwell, Claire J. | Bisig, Christoph | Damby, David E. | Comte, Pierre | Czerwiński, Janusz | Petri-Fink, Alke | Clift, Martin J.D. | Drasler, Barbara | Rothen-Rutishauser, Barbara
Communities resident in urban areas located near active volcanoes can experience volcanic ash exposures during, and following, an eruption, in addition to sustained exposures to high concentrations of anthropogenic air pollutants (e.g., vehicle exhaust emissions). Inhalation of anthropogenic pollution is known to cause the onset of, or exacerbate, respiratory and cardiovascular diseases. It is further postulated similar exposure to volcanic ash can also affect such disease states. Understanding of the impact of combined exposure of volcanic ash and anthropogenic pollution to human health, however, remains limited.The aim of this study was to assess the biological impact of combined exposure to respirable volcanic ash (from Soufrière Hills volcano (SHV), Montserrat and Chaitén volcano (ChV), Chile; representing different magmatic compositions and eruption styles) and freshly-generated complete exhaust from a gasoline vehicle. A multicellular human lung model (an epithelial cell-layer composed of A549 alveolar type II-like cells complemented with human blood monocyte-derived macrophages and dendritic cells cultured at the air-liquid interface) was exposed to diluted exhaust (1:10) continuously for 6 h, followed by immediate exposure to the ash as a dry powder (0.54 ± 0.19 μg/cm2 and 0.39 ± 0.09 μg/cm2 for SHV and ChV ash, respectively). After an 18 h incubation, cells were exposed again for 6 h to diluted exhaust, and a final 18 h incubation (at 37 °C and 5% CO2). Cell cultures were then assessed for cytotoxic, oxidative stress and (pro-)inflammatory responses.Results indicate that, at all tested (sub-lethal) concentrations, co-exposures with both ash samples induced no significant expression of genes associated with oxidative stress (HMOX1, NQO1) or production of (pro-)inflammatory markers (IL-1β, IL-8, TNF-α) at the gene and protein levels. In summary, considering the employed experimental conditions, combined exposure of volcanic ash and gasoline vehicle exhaust has a limited short-term biological impact to an advanced lung cell in vitro model.
Показать больше [+] Меньше [-]Atmospheric levels and cytotoxicity of polycyclic aromatic hydrocarbons and oxygenated-PAHs in PM2.5 in the Beijing-Tianjin-Hebei region
2017
Niu, Xinyi | Ho, Steven Sai Hang | Ho, Kin Fai | Huang, Yu | Sun, Jian | Wang, Qiyuan | Zhou, Yaqing | Zhao, Zhuzi | Cao, Junji
The chemical composition of PM2.5 and cellular effects from exposure to fine aerosol extracts were studied for samples collected in Beijing, Tianjin, Shijiazhuang, and Hengshui, China in winter 2015. Effects of priority polycyclic aromatic hydrocarbons (PAHs) and their oxygenated derivatives (OPAHs) in PM2.5 on cell cultures were a major focus of the study. Total quantified PAHs and OPAHs at Shijiazhuang and Hengshui were higher than at Beijing and Tianjin, and benz(a)anthracene, chrysene and 1,8-naphthalic anhydride were the most abundant species. Exposure to PM2.5 extracts caused a concentration-dependent decline in cell viability and a dose-dependent increase in nitric oxide production. Two cytokines, tumor necrosis factor α (TNF-α) and interleukin 6 (IL-6), also increased when A549 test cells were exposed to PM2.5 extracts. PAHs and OPAHs in PM2.5 can potentially cause cell damage and induce cytotoxicity and pro-inflammatory responses: benzo(a)anthracene-7,12-dione was highly correlated with NO production, dibenz(a,h)anthracene and 1,4-chrysenequinone were correlated with TNF-α production, and 1-naphthaldehyde was significantly correlated with IL-6 production. The study provides a new approach for evaluating relationships between air-quality and cell toxicity with respect to specific chemicals.
Показать больше [+] Меньше [-]Evaluation of cytotoxic and genotoxic activity of fungicide formulation Tango® Super in bovine lymphocytes
2017
Schwarzbacherová, Viera | Wnuk, Maciej | Lewinska, Anna | Potocki, Leszek | Żebrowski, Jacek | Koziorowski, Marek | Holečková, Beáta | Šiviková, Katarína | Dianovský, Ján
Tango® Super is a two-compound fungicide formulation widely employed in grain protection. However, details of Tango® Super effects on cell cultures have not been fully investigated. In this study, bovine lymphocytes were exposed to a concentration range 0.5; 1.5; 3; 6; and 15 μg mL⁻¹ for 4 h to assess the cytotoxicity and genotoxicity of the fungicide. Our experiments revealed that this fungicide treatment reduced cell viability, decreased cell proliferation and provoked apoptotic cell death. Cell cycle analysis showed predominant accumulation of cells in the G0/G1 phase of the cell cycle. The fungicide was able to induce mitochondrial superoxide production accompanied by elevated levels of carbonylated proteins and changes in the lipid membrane composition. The fungicide did not induce micronuclei production, but stimulated both DNA double-strand breaks and the formation of p53 binding protein, which is accumulated during the DNA repair process at the site of double-strand breaks. Based on the obtained data we suppose that the fungicide-induced DNA damage is the result of oxidative stress, which may contribute to higher occurrence of apoptotic cell death. Because ergosterol biosynthesis-inhibiting fungicides are widely used in agriculture to ensure higher crop yields and may cause health impairment of animals and humans, there is a need for further testing to elucidate their potential genotoxic effects using in vivo and/or in vitro systems.
Показать больше [+] Меньше [-]Lung toxicity of particulates and gaseous pollutants using ex-vivo airway epithelial cell culture systems
2022
Lakhdar, Ramzi | Mumby, Sharon | Abubakar-Waziri, Hisham | Porter, Alexandra | Adcock, Ian M. | Chung, Kian Fan
Air pollution consists of a multi-faceted mix of gases and ambient particulate matter (PM) with diverse organic and non-organic chemical components that contribute to increasing morbidity and mortality worldwide. In particular, epidemiological and clinical studies indicate that respiratory health is adversely affected by exposure to air pollution by both causing and worsening (exacerbating) diseases such as chronic obstructive pulmonary disease (COPD), asthma, interstitial pulmonary fibrosis and lung cancer. The molecular mechanisms of air pollution-induced pulmonary toxicity have been evaluated with regards to different types of PM of various sizes and concentrations with single and multiple exposures over different time periods. These data provide a plausible interrelationship between cellular toxicity and the activation of multiple biological processes including proinflammatory responses, oxidative stress, mitochondrial oxidative damage, autophagy, apoptosis, cell genotoxicity, cellular senescence and epithelial-mesenchymal transition. However, these molecular changes have been studied predominantly in cell lines rather than in primary bronchial or nasal cells from healthy subjects or those isolated from patients with airways disease. In addition, they have been conducted under different cell culture conditions and generally in submerged culture rather than the more relevant air-liquid interface culture and with a variety of air pollutant exposure protocols. Cell types may respond differentially to pollution delivered as an aerosol rather than being bathed in media containing agglomerations of particles. As a result, the actual pathophysiological pathways activated by different PMs in primary cells from the airways of healthy and asthmatic subjects remains unclear. This review summarises the literature on the different methodologies utilised in studying the impact of submicron-sized pollutants on cells derived from the respiratory tract with an emphasis on data obtained from primary human cell. We highlight the critical underlying molecular mechanisms that may be important in driving disease processes in response to air pollution in vivo.
Показать больше [+] Меньше [-]Interactions of polymeric drug carriers with DDT reduce their combined cytotoxicity
2018
Zhang, Xuejiao | Lei, Lei | Zhang, Haiyan | Zhang, Siyu | Xing, Weiwei | Wang, Jin | Li, Haibo | Zhao, Qing | Xing, Baoshan
Attention has been paid to the environmental distribution and fate of nanomedicines. However, their effects on the toxicity of environmental pollutants are lack of knowledge. In this study, the negatively charged poly (ethylene glycol)-b-poly (L-lactide-co-glycolide) (mPEG-PLA) and positively charged polyethyleneimine-palmitate (PEI-PA) nanomicelles were synthesized and served as model drug carriers to study the interaction and combined toxicity with dichlorodiphenyltrichloroethane (DDT). DDT exerted limited effect on the biointerfacial behavior of mPEG-PLA nanomicelles, whereas it significantly mitigated the attachment of PEI-PA nanomicelles on the model cell membrane as monitored by quartz crystal microbalance with dissipation (QCM-D). The cytotoxicity of DDT towards NIH 3T3 cells was greatly decreased by either co-treatment or pre-treatment with the nanomicelles according to the results of real-time cell analysis (RTCA). The cell viability of NIH 3T3 exposed to DDT was increased up to 90% by the co-treatment with mPEG-PLA nanomicelles. Three possible reasons were proposed: (1) decreased amount of free DDT in the cell culture medium due to the partitioning of DDT into nanomicelles; (2) mitigated cellular uptake of nanomicelle-DDT complexes due to the complex agglomeration or electrostatic repulsion between complexes and cell membrane; (3) detoxification effect in the lysosome upon endocytosis of nanomicelle-DDT complexes.
Показать больше [+] Меньше [-]Metabolism of pharmaceutical and personal care products by carrot cell cultures
2016
Wu, Xiaoqin | Fu, Qiuguo | Gan, Jay
With the increasing use of treated wastewater and biosolids in agriculture, residues of pharmaceutical and personal care products (PPCPs) in these reused resources may contaminate food produce via plant uptake, constituting a route for human exposure. Although various PPCPs have been reported to be taken up by plants in laboratories or under field conditions, at present little information is available on their metabolism in plants. In this study, we applied carrot cell cultures to investigate the plant metabolism of PPCPs. Five phase I metabolites of carbamazepine were identified and the potential metabolism pathways of carbamazepine were proposed. We also used the carrot cell cultures as a rapid screening tool to initially assess the metabolism potentials of 18 PPCPs. Eleven PPCPs, including acetaminophen, caffeine, meprobamate, primidone, atenolol, trimethoprim, DEET, carbamazepine, dilantin, diazepam, and triclocarban, were found to be recalcitrant to metabolism. The other 7 PPCPs, including triclosan, naproxen, diclofenac, ibuprofen, gemfibrozil, sulfamethoxazole, and atorvastatin, displayed rapid metabolism, with 0.4–47.3% remaining in the culture at the end of the experiment. Further investigation using glycosidase hydrolysis showed that 1.3–20.6% of initially spiked naproxen, diclofenac, ibuprofen, and gemfibrozil were transformed into glycoside conjugates. Results from this study showed that plant cell cultures may be a useful tool for initially exploring the potential metabolites of PPCPs in plants as well as for rapidly screening the metabolism potentials of a variety of PPCPs or other emerging contaminants, and therefore may be used for prioritizing compounds for further comprehensive evaluations.
Показать больше [+] Меньше [-]DNA-damage effect of polycyclic aromatic hydrocarbons from urban area, evaluated in lung fibroblast cultures
2012
Teixeira, Elba Calesso | Pra, Daniel | Idalgo, Daniele | Henriques, João Antonio Pêgas | Wiegand, Flavio
This study was designed to biomonitor the effect of PAH extracts from urban areas on the DNA of lung cell cultures. The analyses of the polycyclic aromatic hydrocarbons (PAHs) were performed in atmospheric PM₂.₅ and PM₁₀ collected at three sampling sites with heavy traffic located in the Metropolitan Area of Porto Alegre (MAPA) (Brazil). The concentrations of 16 major PAHs were determined according to EPA. Comet assay on V79 hamster lung cells was chosen for genotoxicity evaluation. Temperature, humidity, and wind speed were recorded. With regard to the damage index, higher levels were reported in the extract of particulate matter samples from the MAPA during the summer. High molecular weight compounds showed correlation with DNA damage frequency and their respective carcinogenicity.
Показать больше [+] Меньше [-]Dichlorodiphenyltrichloroethane metabolites inhibit DNMT1 activity which confers methylation-specific modulation of the sex determination pathway
2021
Hu, Junjie | Yang, Yan | Lv, Xiaomei | Lao, Zhilang | Yu, Lili
Dichlorodiphenyltrichloroethane (DDT) poses a significant health risk to humans which is associated with genomic DNA hypomethylation. However, the mechanism and biological consequences remain poorly understood. In vitro assays confirmed that the DDT metabolites 2,2-bis(p-chlorophenyl)-acetic acid (DDA) and 1-chloro-2,2-bis-(p-chlorophenyl)ethylene (DDMU), but not other DDT metabolites, significantly inhibited DNA methyltransferase 1 (DNMT1) activity, leading to genomic hypomethylation in cell culture assays. DNMT1 as a target for DNA hypomethylation induced by DDT metabolites was also confirmed using cell cultures in which DNMT1 was silenced or highly expressed. DDA and DDMU can modify methylation markers in the promoter regions of sexual development-related genes, and change the expression of Sox9 and Oct4 in embryonic stem cells. Molecular docking indicated that DDA and DDMU bound to DNMT1 with high binding affinity. Molecular dynamic simulation revealed that DDA and DDMU acted as allosteric modulators that reshaped the conformation of the catalytic domain of DNMT1. These findings provide a new insight into DDT-induced abnormalities in sexual development and demonstrate that selective binding to DNMT1 by DDA and DDMU can interfere with human DNMT1 activity and regulate the expression of the Sox9 and Oct4 genes.
Показать больше [+] Меньше [-]