Уточнить поиск
Результаты 1-10 из 75
Accumulation and partitioning of toxic trace metal(loid)s in phytoliths of wheat grown in a multi-element contaminated soil
2022
Liu, Linan | Song, Zhaoliang | Li, Qiang | Ellam, Rob M. | Tang, Jingchun | Wang, Yangyang | Sarkar, Binoy | Wang, Hailong
Cropland contamination by toxic trace metal (loid)s (TTMs) has attracted increasing attention due to the serious consequential threat to crop quality and human health. Mitigation of plant TTM stress by silica amendment has been proposed recently. However, the relationship between the siliceous structure of phytoliths and TTMs in plants, and the environmental implications of phytolith-occluded trace metal (loid)s (PhytTMs) remain unclear. This study assessed the accumulation of five metal (loid)s, including lead (Pb), zinc (Zn), cadmium (Cd), copper (Cu) and arsenic (As), in the organic tissues and phytoliths of wheat grown in a mixed-TTM contaminated soil under both lightly and heavily contaminated conditions. The results show that the concentrations of plant TTMs and PhytTMs were significantly (p < 0.05) positively correlated, and higher in heavily contaminated wheats than those in lightly contaminated ones. The bio-enrichment factors between phytoliths and organic tissues were higher for As (1.83), Pb (0.27) and Zn (0.30) than for Cd (0.03) and Cu (0.14), implying that As, Pb and Zn were more readily co-precipitated with silicon (Si) in phytolith structures than Cd and Cu. Network analysis of the relationship between soil and plant elements with PhytTMs showed that severe contamination could impact the homeostasis of elements in plants by altering the translocation of TTMs between soils, plants, and phytoliths. The accumulation of TTMs in phytoliths was affected by the capacity of Si deposition in tissues and chelation of TTMs with silica, which could impact the role of PhytTMs in global biogeochemical TTM cycles.
Показать больше [+] Меньше [-]Mechanistic insight to mycoremediation potential of a metal resistant fungal strain for removal of hazardous metals from multimetal pesticide matrix
2020
Dey, Priyadarshini | Malik, Anushree | Mishra, Abhishek | Singh, Dileep Kumar | von Bergen, Martin | Jehmlich, Nico
Fungi have an exceptional capability to flourish in presence of heavy metals and pesticide. However, the mechanism of bioremediation of pesticide (lindane) and multimetal [mixture of cadmium (Cd), chromium (Cr), copper (Cu), nickel (Ni), lead (Pb), zinc (Zn)] by a fungus is little understood. In the present study, Aspergillus fumigatus, a filamentous fungus was found to accumulate heavy metals in the order [Zn(98%)>Pb(95%)>Cd(63%)>Cr(62%)>Ni(46%)>Cu(37%)] from a cocktail of 30 mg L⁻¹ multimetal and lindane (30 mg L⁻¹) in a composite media amended with 1% glucose. Particularly, Pb and Zn uptake was enhanced in presence of lindane. Remarkably, lindane was degraded to 1.92 ± 0.01 mg L⁻¹ in 72 h which is below the permissible limit value (2.0 mg L⁻¹) for the discharge of lindane into the aquatic bodies as prescribed by European Community legislation. The utilization of lindane as a cometabolite from the complex environment was evident by the phenomenal growth of the fungal pellet biomass (5.89 ± 0.03 g L⁻¹) at 72 h with cube root growth constant of fungus (0.0211 g¹/³ L⁻¹/³ h⁻¹) compared to the biomasses obtained in case of the biotic control as well as in presence of multimetal complex without lindane. The different analytical techniques revealed the various stress coping strategies adopted by A. fumigatus for multimetal uptake in the simultaneous presence of multimetal and pesticide. From the Transmission electron microscope coupled energy dispersive X-ray analysis (TEM-EDAX) results, uptake of the metals Cd, Cu and Pb in the cytoplasmic membrane and the accumulation of the metals Cr, Ni and Zn in the cytoplasm of the fungus were deduced. Fourier-transform infrared spectroscopy (FTIR) revealed involvement of carboxyl/amide group of fungal cell wall in metal chelation. Thus A. fumigatus exhibited biosorption and bioaccumulation as the mechanisms involved in detoxification of multimetals.
Показать больше [+] Меньше [-]A novel clean production approach to utilize crop waste residues as co-diet for mealworm (Tenebrio molitor) biomass production with biochar as byproduct for heavy metal removal
2019
Yang, Shanshan | Chen, Yi-di | Zhang, Ye | Zhou, Hui-Min | Ji, Xin-Yu | He, Lei | Xing, De-Feng | Ren, Nan-Qi | Ho, Shih-Hsin | Wu, Weimin
Proper management of waste crop residues has been an environmental concern for years. Yellow mealworms (larvae of Tenebrio molitor Linnaeus, 1758) are major insect protein source. In comparison with normal feed wheat bran (WB), we tested five common lignocellulose-rich crop residues as feedstock to rear mealworms, including wheat straw (WS), rice straw (RS), rice bran (RB), rice husk (RH), and corn straw (CS). We then used egested frass for the production of biochar in order to achieve clean production. Except for WS and RH, the crop residues supported mealworms’ life activity and growth with consumption of the residues by 90% or higher and degraded lignin, hemicellulose and cellulose over 32 day period. The sequence of degradability of the feedstocks is RS > RB > CS > WS > RH. Egested frass was converted to biochar which was tested for metal removal including Pb(II), Cd(II), Cu(II), Zn(II), and Cr(VI). Biochar via pyrolysis at 600 °C from RS fed frass (FRSBC) showed the best adsorption performance. The adsorption isotherm fits the Langmuir model, and kinetic analysis fits the Pseudo-Second Order Reaction. The heavy metal adsorption process was well-described using the Intra-Particle Diffusion model. Complexation, cation exchange, precipitation, reduction, deposition, and chelation dominated the adsorption of the metals onto FRSBC. The results indicated that crop residues (WS, RS, RB, and CS) can be utilized as supplementary feedstock along with biochar generated from egested frass to rear mealworms and achieve clean production while generating high-quality bioadsorbent for environment remediation and soil conditioning.
Показать больше [+] Меньше [-]Metal accumulation and detoxification mechanisms in mycorrhizal Betula pubescens
2017
Fernández-Fuego, D. | Bertrand, A. | González, A.
Metal detoxification in plants is a complex process that involves different mechanisms, such as the retention of metals to the cell wall and their chelation and subsequent compartmentalization in plant vacuoles. In order to identify the mechanisms involved in metal accumulation and tolerance in Betula pubescens, as well as the role of mycorrhization in these processes, mycorrhizal and non-mycorrhizal plants were grown in two industrial soils with contrasting concentrations of heavy metals.Mycorrhization increased metal uptake at low metal concentrations in the soil and reduced it at high metal concentrations, which led to an enhanced growth and biomass production of the host when growing in the most polluted soil. Our results suggest that the sequestration on the cell wall is the main detoxification mechanism in white birch exposed to acute chronic metal-stress, while phytochelatins play a role mitigating metal toxicity inside the cells. Given its high Mn and Zn root-to-shoot translocation rate, Betula pubescens is a very promising species for the phytoremediation of soils polluted with these metals.
Показать больше [+] Меньше [-]The effect of Cu2+ chelation on the direct photolysis of oxytetracycline: A study assisted by spectroscopy analysis and DFT calculation
2016
Jin, Xin | Qiu, Shanshan | Wu, Ke | Jia, Mingyun | Wang, Fang | Gu, Chenggang | Zhang, Aiqian | Jiang, Xin
The extensive usage of OTC and Cu2+ in livestock and poultry industry caused high residues in natural environment. Co-contamination of OTC and Cu2+ was a considerable environmental problem in surface waters. In this study, Cu2+ mediated direct photolysis of OTC was studied. Cu2+ chelating with OTC was found to greatly inhibit OTC photodegradation. To reveal the chelation mechanism of OTC-Cu complexes, multiple methods including UV–Vis absorption spectra, Infrared (IR) spectra, mass spectroscopy, and density functional theoretical (DFT) modeling were performed. Four OTC-Cu complexes were proposed. Cu2+ preferably bond to O11O12 site with the binding constants logK = 8.19 and 7.86 for CuHL+ and CuL±, respectively. The second chelating site was suggested to be O2O3 with the binding constants of logK = 4.41 and 4.62 for Cu2HL3+ and Cu2L2+, respectively. The suppressed quantum yield of OTC by Cu2+ chelation was accused for their intra-/inter-molecular electron transfer, by which the energy in activated states was distributed. The occurrence of electron transfer between BCD ring and A ring also from BCD ring to Cu was evidenced by the TD-DFT result only for the OTC-Cu complexes. Besides, the cyclic voltammetry measurement also suggested one OTC-Cu(II)/OTC-Cu(I) redox couple. These results suggested that the persistence of OTC in environmental surface waters will probably be underestimated for neglecting the chelating effect of Cu2+. The photolysis quantum yield of OTC-Cu complexes, as well as the specific molar absorption constants, the equilibrium binding constants of Cu2+ with OTC could contribute to more accurate kinetic models of OTC.
Показать больше [+] Меньше [-]Jasmonic acid alleviates cadmium toxicity through regulating the antioxidant response and enhancing the chelation of cadmium in rice (Oryza sativa L.)
2022
Li, Yan | Zhang, Shengnan | Bao, Qiongli | Chu, Yutan | Sun, Hongyu | Huang, Yizong
Cadmium (Cd) is a potentially hazardous element with substantial biological toxicity, adversely affecting plant growth and physiological metabolism. Therefore, it is necessary to explore practical and environment-friendly approaches to reduce toxicity. Jasmonic acid (JA) is an endogenous growth regulator which helps plants defend against biological and abiotic stresses. To determine how JA help relieve Cd toxicity in rice, both laboratory and field experiments were implemented. In the seedling stage, the role of JA in mediating rice Cd tolerance was investigated via a fluorescent probe in vivo localization, Fourier Transform Infrared Spectroscopy (FTIR), and colorimetry. At the mature growth stage of rice, field experiments were implemented to research the effects of JA on the Cd uptake and translocation in rice. In the seedling stage of rice, we found that JA application increased the cell wall compartmentalization of Cd by promoting the Cd combination on chelated-soluble pectin of rice roots and inhibited Cd movement into protoplasts, thereby reducing the Cd content in the roots by 30.5% and in the shoots by 53.3%, respectively. Application of JA reduced H₂O₂ content and helped relieve Cd-induced peroxidation damage of membrane lipid by increasing the level of catalase (CAT), peroxidase (POD), ascorbate peroxidase (APX), and glutathione (GSH), but had no significant effect on the superoxide dismutase (SOD) activity. Additionally, field experiments showed that foliar spraying of JA inhibited rice Cd transport from the stalk and root to the grain and reduced Cd concentration in grain by 29.7% in the high-Cd fields and 28.0% in the low-Cd fields. These results improve our understanding of how JA contributes to resistance against Cd toxicity in rice plants and reduces the accumulation of Cd in rice kernels.
Показать больше [+] Меньше [-]The relationship between fluoride accumulation in tea plant and changes in leaf cell wall structure and composition under different fluoride conditions
2021
Luo, Jinlei | Ni, Dejiang | Li, Chunlei | Du, Yaru | Chen, Yuqiong
Tea plant is capable of hyper-accumulating fluoride (F) in leaves, suggesting drinking tea may cause excessive F intake in our body and threaten the health. This study investigated the changes in the structure, composition, and F content in the leaf cell wall of the tea (Camellia sinensis) under different F conditions to demonstrate the role of cell wall in F enrichment in tea plants. The cell wall was shown as the main part for F accumulation (67%–92%), with most of F distributed in the pectin fraction (56%–71%). With increasing F concentration, a significant increase (p < 0.05) was observed in the F content of cell wall and its components, the level of cell wall metal ions (i.e. Cu, Mg, Zn, Al, Ca, Ba, Mn), as well as the content of total cell wall materials, cellulose, and pectin. Meanwhile, the level of Cu, Mg, Zn, pectin, and cellulose was significantly positively correlated with the F content in the leaf cell wall. F addition was shown to increase the fluorescence intensity of LM19 and 2F4 antibody-labeled low-methylesterified homogalacturonans (HGs), while decrease LM20-labeled high-methylesterified HGs, coupled with an increase in the activity and gene expression of pectin methyl esterases (PMEs) in tea leaves. All these results suggest that F addition can increase pectin content and demethylesterification, leading to increased absorption of metal cations and chelation of F in the cell wall through the action of metal ions.
Показать больше [+] Меньше [-]Mediation effects of different sulfur forms on solubility, uptake and accumulation of Cd in soil-paddy rice system induced by organic carbon and liming
2021
Yao, Aijun | Liu, Ying | Sitong, | Liu, Chong | Tang, Yetao | Wang, Shizhong | Huang, Xiongfei | Qiu, Rongliang
Liming is a safe and effective remediation practice for Cd contaminated acid paddy soil. The fate of Cd can also be strongly influenced by redox chemistry of sulfur. But it is unclear if, to what extent and how the combination of liming and sulfur mediation could further control Cd uptake by paddy rice. A rice cultivation pot experiment was conducted to evaluate the impact of different sulfur forms (S⁰ and SO₄²⁻ in K₂SO₄) on the solubility, uptake and accumulation of Cd in the soil-paddy rice system and how liming and reducing organic carbon mediate the process. Results showed that under neutral soil circumstances achieved by liming, co-application of K₂SO₄ and glucose significantly reduced brown rice Cd by 33%, compared to liming alone. They made it more readily for Cd²⁺ to be precipitated into CdS/CdS₂ or co-precipitate with newly formed FeS/FeS₂/iron oxides. The higher pH balancing capability of K₂SO₄ as well as liming kept the newly formed sulfide or iron containing minerals negatively charged to be more prone to adsorb Cd²⁺, that kept the porewater Cd²⁺ the lowest among all the treatments. Individual K₂SO₄ showed significant promoting effect on soil Cd solubility due to SO₄²⁻ chelation effect. Furthermore, K₂SO₄ had much weaker inhibiting effect on Cd translocation from root to grain, it showed no significant attenuating effect on brown rice Cd. S⁰ containing treatments displayed weaker or no attenuating effect on brown rice Cd due to its strong soil acidification effect. On the basis of liming, organic carbon induced sulfur (K₂SO₄) mediation showed great application potential for safe production on large areas of acid paddy soil contaminated by Cd.
Показать больше [+] Меньше [-]Change in phytoextraction of Cd by rapeseed (Brassica napus L.) with application rate of organic acids and the impact of Cd migration from bulk soil to the rhizosphere
2020
Qiao, Dongmei | Lu, Hongfei | Zhang, Xiaoxian
Adding exogenous low-molecular weight organic acids is an effective technique to improve phytoremediation of Cd-contaminated soil and has been well documented, but how acid application rate affects remediation efficiency and its underlying limiting factors remains elusive. We investigated this using pot experiments with rapeseed (Brassica napus L.) as the model plant. Plastic pots packed with a sandy loam contaminated by Cd at 4.838 mg/kg were amended with acetic acid, oxalic acid, citric acid, malic acid and tartaric acid, respectively, at an application rate gradient varying from 0.0 to 12.0 mmol/kg. Plants in each pot were harvested after growing for five months, and we then measured the exchangeable, carbonate, Fe–Mn oxide, organic and residual Cd in the rhizosphere, as well as Cd in both roots and shoots. The results showed that all organic acids improved plant uptake of Cd and, compared with the control without acid addition, they could improve Cd uptake by more than 100%. The enhanced Cd extraction was due to the increase in exchangeable Cd in the rhizosphere. Plant Cd was weakly correlated to the amount of Cd lost from a unit volume of the rhizosphere due to root extraction (R² = 0.06), but a good negative correlation was found between them after normalizing the lost Cd by root biomass (R² = 0.36). Mass balance analysis revealed that the average Cd content in soil (rhizosphere and bulk soils combined) was much higher than the Cd content in the rhizosphere, and the improved Cd mobility after acid addition was thus due to the increased chelation. As diffusion of ligands in water is one order in magnitude smaller than diffusion of Cd ions, our results suggested that Cd migration from the bulk soil into the rhizosphere was a major factor limiting Cd phytoextraction by rapeseed after adding the exogenous organic acids.
Показать больше [+] Меньше [-]Enhanced and selective adsorption of Hg2+ to a trace level using trithiocyanuric acid-functionalized corn bract
2019
Lin, Guo | Wang, Shixing | Zhang, Libo | Hu, Du | Cheng, Song | Fu, Likang | Xiong, Chao
A novel trithiocyanuric acid-modified corn bract (TCA-CCB) was prepared, and its removal properties for Hg²⁺ were investigated. TCA-CCB showed a remarkable absorbability for Hg²⁺ in mixed ion solutions. Adsorption kinetics experiments indicated that the removal of Hg²⁺ on TCA-CCB was quick, with a removal rate of 99.07% within 5 min. In addition, the removal rate of Hg²⁺ exceeded 98% over all pH conditions. The adsorption process can be best described by pseudo-second-order kinetic and Hill isotherm models. The saturated adsorption capacity of TCA-CCB for Hg²⁺ was 390 mg/g. The TCA-CCB could efficiently adsorb Hg²⁺ from the simulated wastewater and reduce the Hg²⁺ concentration from 10 ppm to 12.35 ppb, which was lower than the greatest allowable value of 50 ppb and satisfied the emission standards required by the Chinese government. Moreover, the removal rate of Hg²⁺ was beyond 99% after three cycles. The results of the zeta potential and X-ray photoelectron spectroscopy (XPS) implied that the chelation and ion exchange between amino/thiol groups and Hg²⁺ played a significant role in the improvement of the adsorption properties.The corn bract modified by trithiocyanuric acid exhibits apparent advantages in the removal of Hg²⁺ from ppm to ppb due to its high selectivity, adsorption capacity and stability.
Показать больше [+] Меньше [-]