Уточнить поиск
Результаты 1-10 из 64
Mitigation of hazardous toluene via ozone-catalyzed oxidation using MnOx/Sawdust biochar catalyst
2022
Cha, Jin Sun | Kim, Young-Min | Lee, Im Hack | Choi, Yong Jun | Rhee, Gwang Hoon | Song, Hocheol | Jeon, Byong-Hun | Lam, Su Shiung | Khan, Moonis Ali | Andrew Lin, Kun-Yi | Chen, Wei-Hsin | Park, Young-Kwon
This study investigated catalytic ozone oxidation using a sawdust char (SDW) catalyst to remove hazardous toluene emitted from the chemical industry. The catalyst properties were analyzed by proximate, ultimate, nitrogen adsorption-desorption isotherms, Fourier-transform infrared, and X-ray photoelectron spectroscopy analyses. In addition, hydrogen-temperature programmed reduction experiments were conducted to analyze the catalyst properties. The specific area and formation of micropores of SDC were improved by applying KOH treatment. MnOx/SDC-K3 exhibited a higher toluene removal efficiency of 89.7% after 100 min than MnOx supported on activated carbon (MnOx/AC) with a removal efficiency of 6.6%. The higher (Oₐdₛ (adsorbed oxygen)+Oᵥ(vacancy oxygen))/OL (lattice oxygen) and Mn³⁺/Mn⁴⁺ ratios of MnOx/SDC-K3 than those of MnOx/AC seemed to be important for the catalytic oxidation of toluene.
Показать больше [+] Меньше [-]Microwave-responsive SiC foam@zeolite core-shell structured catalyst for catalytic pyrolysis of plastics
2022
Chen, Zhaohui | Monzavi, Mohammad | Latifi, Mohammad | Samih, Said | Chaouki, J.
Catalytic pyrolysis is a promising chemical recycling technology to supplement mechanical recycling since plastics can be broken down into monomers or converted to the required fuels and chemicals. In this study, a microwave (MW) -responsive SiC foam@zeoltie core-shell structured catalyst was proposed for the catalytic pyrolysis of polyolefins. Under microwave irradiation, the SiC foam core works as both microwave adsorber and catalyst support, thus concentrating the generated heat energy on the ZSM-5 zeolite shell, where the catalytic reaction takes place. SiC foam with an open cellular structure can also improve the global transport of mass and heat during plastics pyrolysis. In this work, the effects of the SiO₂/Al₂O₃ ratio and alkaline treatment of ZSM-5 zeolite coated SiC foam under MW irradiation on the variations in product distribution from low-density polyethylene (LDPE) pyrolysis were investigated at 450 °C. The results indicated that the appropriate acidity and pore structure were crucial to upgrading gas and liquid products. Particularly, the creation of a mesoporous structure in ZSM-5 zeolite via alkaline treatment could improve the diffusion of large molecules and products, thus significantly increasing the selectivity of high-valued light olefins and aromatics while inhibiting the formation of unwanted alkanes, which are expected in the chemical industry. Concretely, the concentration of olefins in gas increased to 51.0 vol% for ZSM-5(50)-0.25AT, and 65.6 vol% for ZSM-5 (50)-0.50AT, compared with 45.2 vol% for the parent ZSM-5(50). The relative concentration of aromatics in liquid decreased from 96.6% for ZSM-5(50) to 75.9% for ZSM-5(50)-0.25AT, and 71.1% for ZSM-5(50)-0.50AT. Given the respective yield of gas and liquid, the total selectivity of C2–C4 olefins and aromatics for mesoporous ZSM-5 zeolites could reach 58.6–64.9% during LDPE pyrolysis, which were higher than that for the parent ZSM-5 zeolite.
Показать больше [+] Меньше [-]Characteristics and health risks of benzene series and halocarbons near a typical chemical industrial park
2021
Chen, Ruonan | Li, Tingzhen | Huang, Chengtao | Yu, Yunjiang | Zhou, Li | Hu, Guocheng | Yang, Fumo | Zhang, Liuyi
Health risks of typical benzene series and halocarbons (BSHs) in a densely populated area near a large-scale chemical industrial park were investigated. Ambient and indoor air and tap water samples were collected in summer and winter; and the concentration characteristics, sources, and exposure risks of typical BSH species, including five benzene series (benzene, toluene, ethylbenzene, o-xylene, m,p-xylene) and five halocarbons (dichloromethane, trichloromethane, trichloroethylene, tetrachloromethane, and tetrachloroethylene), were analysed. The total mean concentrations of BSHs were 53.32 μg m⁻³, 36.29 μg m⁻³, and 26.88 μg L⁻¹ in indoor air, ambient air, and tap water, respectively. Halocarbons dominated the total BSHs with concentrations relatively higher than those in many other industrial areas. Industrial solvent use, industrial processes, and vehicle exhaust emissions were the principal sources of BSHs in ambient air. The use of household products (e.g., detergents and pesticides) was the principal source of indoor BSHs. Inhalation is the primary human exposure route. Ingestion of drinking water was also an important exposure route but had less impact than inhalation. Lifetime non-cancer risks of individual and cumulative BSHs were below the threshold (HQ = 1), indicating no significant lifetime non-cancer risks in the study area. However, tetrachloromethane, benzene, trichloromethane, ethylbenzene, and trichloroethylene showed potential lifetime cancer risk. The cumulative lifetime cancer risks exceeded the tolerable benchmark (1 × 10⁻⁴), indicating a lifetime cancer risk of BSHs to residents near the chemical industry park. This study provides valuable information for the management of public health in chemical industrial parks.
Показать больше [+] Меньше [-]Spatial distributions and sources of PAHs in soil in chemical industry parks in the Yangtze River Delta, China
2021
Jia, Tianqi | Guo, Wei | Xing, Ying | Lei, Rongrong | Wu, Xiaolin | Sun, Shurui | He, Yunchen | Liu, Wenbin
The Yangtze River Delta (YRD) is one of the fastest developing areas in eastern China and contains many chemical industry parks. The profiles and sources of polycyclic aromatic hydrocarbons (PAHs) in soil in chemical industry parks and surrounding areas in the YRD were investigated by analyzing soil samples (n = 64) were collected in the YRD and Rudong chemical park (RD), a typical chemical park in the Yangtze River Delta. The total concentrations of 19 PAHs in the YRD soil samples were 16.3–4694 ng g⁻¹ (mean 688 ng g⁻¹), and the total concentrations of PAHs in RD were 21.6–246 ng g⁻¹ (mean 75.4 ng g⁻¹). The PAHs in soil in YRD were dominated by four-ring and five-ring PAHs, and the PAHs in RD were dominated by two-ring and three-ring PAHs. It suggested that PAHs may have been supplied to soil in YRD predominantly through coal combustion and vehicle emissions, PAHs in the soil of RD may be due to the volatilization and leakage of chemical raw material. According to the different distribution characteristics of PAHs, the ratio (1.5) of (2 + 3) rings/4 rings was proposed to identify the chemical source of PAHs. The PAH isomer ratios and principal component analysis/multiple linear regression (PCA/MLRA) results indicated that PAHs concentrations in soil in the YRD and RD are mainly supplied by industrial and traffic emissions. Incremental lifetime cancer risks (ILCRs) indicated that PAHs in soil pose negligible cancer risks to children and adults, but much stronger risks to children than adults.
Показать больше [+] Меньше [-]Risk of gastric cancer in the environs of industrial facilities in the MCC-Spain study
2021
García-Pérez, Javier | Lope, Virginia | Fernández de Larrea-Baz, Nerea | Molina, Antonio J. | Tardón, Adonina | Alguacil, Juan | Pérez-Gómez, Beatriz | Moreno, Víctor | Guevara, Marcela | Castaño-Vinyals, Gemma | Jiménez-Moleón, José J. | Gómez Acebo, Inés | Molina-Barceló, Ana | Martín Hernández, Vicente | Kogevinas, Manolis | Pollán, Marina | Aragonés, Nuria
Gastric cancer is the fifth most frequent tumor worldwide. In Spain, it presents a large geographic variability in incidence, suggesting a possible role of environmental factors in its etiology. Therefore, epidemiologic research focused on environmental exposures is necessary.To assess the association between risk of gastric cancer (by histological type and tumor site) and residential proximity to industrial installations, according to categories of industrial groups and specific pollutants released, in the context of a population-based multicase-control study of incident cancer conducted in Spain (MCC-Spain).In this study, 2664 controls and 137 gastric cancer cases from 9 provinces, frequency matched by province of residence, age, and sex were included. Distances from the individuals’ residences to the 106 industries located in the study areas were computed. Logistic regression was used to estimate odds ratios (ORs) and 95% confidence intervals (95%CIs) for categories of distance (from 1 km to 3 km) to industries, adjusting for matching variables and potential confounders.Overall, no excess risk of gastric cancer was observed in people living close to the industrial installations, with ORs ranging from 0.73 (at ≤2.5 km) to 0.93 (at ≤1.5 km). However, by industrial sector, excess risks (OR; 95%CI) were found near organic chemical industry (3.51; 1.42–8.69 at ≤2 km), inorganic chemical industry (3.33; 1.12–9.85 at ≤2 km), food/beverage sector (2.48; 1.12–5.50 at ≤2 km), and surface treatment using organic solvents (3.59; 1.40–9.22 at ≤3 km). By specific pollutant, a statistically significant excess risk (OR; 95%CI) was found near (≤3 km) industries releasing nonylphenol (6.43; 2.30–17.97) and antimony (4.82; 1.94–12.01).The results suggest no association between risk of gastric cancer and living in the proximity to the industrial facilities as a whole. However, a few associations were detected near some industrial sectors and installations releasing specific pollutants.
Показать больше [+] Меньше [-]Suspect screening and risk assessment of pollutants in the wastewater from a chemical industry park in China
2020
Liu, Wei | Yao, Hongye | Xu, Wei | Liu, Guangbing | Wang, Xuebing | Tu, Yong | Shi, Peng | Yu, Nanyang | Li, Aimin | Wei, Si
Owing to the production and use of chemicals in chemical industry parks (CIPs), these areas are considered to be highly polluted. However, the type of pollutants presents in the wastewater from CIPs and the risk posed to the environment due to the release of these pollutants remains unclear. In this study, suspect screening was combined with traceability analysis to determine the type of pollutants present in wastewaters at 9 chemical enterprises and wastewater treatment plants (WWTPs) in the CIPs. Additionally, the distribution of nine pollutants from the WWTPs’ effluent stage and the risk they posed to the surrounding river was examined through target analysis. Upon conducting suspect analysis, the presence of 65 and 64 chemicals in the 9 chemical enterprises’ wastewaters and WWTPs, respectively, was tentatively identified. Traceability analysis of the compounds screened in the effluent from the WWTPs determined that 41 substances were identified as characteristic pollutants of the chemical enterprises, indicating that the suspect screening strategy enabled relatively more efficient identification of the characteristic pollutants compared to traditional quantitative analysis. Targeting analysis combined with ecological risk assessment showed that metolachlor, carbendazim, atrazine, diuron, and chlorpyrifos posed relatively higher risks to aquatic organisms in the surrounding river. Therefore, the refined management of the wastewater treatment plant in the CIPs is necessary.
Показать больше [+] Меньше [-]Association between proximity to industrial chemical installations and cancer mortality in Spain
2020
Ayuso-Álvarez, Ana | García-Pérez, Javier | Triviño Juárez, José Matías | Larrinaga-Torrontegui, Unai | González Sánchez, Mario | Ramis, Rebeca | Boldo, Elena | López-Abente, Gonzalo | Galán, Iñaki | Fernández-Navarro, Pablo
It is likely that pollution from chemical facilities will affect the health of any exposed population; however, the majority of scientific evidence available has focused on occupational exposure rather than environmental. Consequently, this study assessed whether there could have been an excess of cancer-related mortality associated with environmental exposure to pollution from chemical installations – for populations residing in municipalities in the vicinity of chemical industries. To this end, we designed an ecological study which assessed municipal mortality due to 32 types of cancer in the period from 1999 to 2008. The exposure to pollution was estimated using distance from the facilities to the centroid of the municipality as a proxy for exposure. In order to assess any increased cancer mortality risk in municipalities potentially exposed to chemical facilities pollution (situated at a distance of ≤5 km from a chemical installation), we employed Bayesian Hierarchical Poisson Regression Models. This included two Bayesian inference methods: Integrated Nested Laplace Approximations (INLA) and Markov Chain Monte Carlo (MCMC, for validation). The reference category consisted of municipalities beyond the 5 km limit. We found higher mortality risk (relative risk, RR; estimated by INLA, 95% credible interval, 95%CrI) for both sexes for colorectal (RR, 1.09; 95%CrI, 1.05–1.15), gallbladder (1.14; 1.03–1.27), and ovarian cancers (1.10; 1.02–1.20) associated with organic chemical installations. Notably, pleural cancer (2.27; 1.49–3.41) in both sexes was related to fertilizer facilities. Associations were found for women, specifically for ovarian (1.11; 1.01–1.22) and breast cancers (1.06; 1.00–1.13) in the proximity of explosives/pyrotechnics installations; increased breast cancer mortality risk (1.10; 1.03–1.18) was associated with proximity to inorganic chemical installations. The results suggest that environmental exposure to pollutants from some types of chemical facilities may be associated with increased mortality from several different types of cancer.
Показать больше [+] Меньше [-]An ICT-based fluorescent probe with a large Stokes shift for measuring hydrazine in biological and water samples
2020
Zhu, Meiqing | Xu, Yimin | Sang, Linfeng | Zhao, Zongyuan | Wang, Lijun | Wu, Xiaoqin | Fan, Fugang | Wang, Yi | Li, Hui
As a strong reductant and highly active alkali, hydrazine (N2H4) has been widely used in chemical industry, pharmaceutical manufacturing and agricultural production. However, its high acute toxicity poses a threat to ecosystem and human health. In the present study, a ratiometric fluorescent probe for the detection of N2H4 was designed, utilizing dicyanoisophorone as the fluorescent group and 4-bromobutyryl moiety as the recognition site. 4-(2-(3-(dicyanomethylene)-5,5-dimethylcyclohex-1-enyl) phenyl 4-brobutanoate (DDPB) was readily synthesized and could specially sense N2H4 via an intramolecular charge transfer (ICT) pathway. The cyclization cleavage reaction of N2H4 with a 4-bromobutyryl group released phenolic hydroxyl group and reversed the ICT process between hydroxy group and fluorophore, turning on the fluorescence in the DDPB-N2H4 complexes. DDPB exhibits a low cytotoxicity, reasonable cell permeability, a large Stokes shift (186 nm) and a low detection limit (86.3 nM). The quantitative determination of environmental water systems and the visualization fluorescence of DDPB test strips provides a strong evidence for the applications of DDPB. In addition, DDPB is suitable for the fluorescence imaging of exogenous N2H4 in HeLa cells and zebrafish.
Показать больше [+] Меньше [-]Tracing perfluoroalkyl substances (PFASs) in soils along the urbanizing coastal area of Bohai and Yellow Seas, China
2018
Meng, Jing | Wang, Tieyu | Song, Shuai | Wang, Pei | Li, Qifeng | Zhou, Yunqiao | Lü, Yonglong
With the shift of fluorine chemical industry from developed countries to China and increasing demand for fluorine chemical products, occurrence of perfluoroalkyl substances (PFASs) in production and application areas has attracted more attention. In this study, 153 soil samples were collected from 21 cities along the urbanizing coastal area of the Bohai and Yellow Seas. PFASs in this area were relatively higher, compared with other study areas. The concentrations ranged from 2.76 to 64.0 ng g−1, and those in most sites were between 2.76 and 13.9 ng g−1, with a predominance of perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS). Among the 21 coastal cities, contaminations of PFASs in Zibo, Nantong and Binzhou were elevated, which was likely affected by local fluorine chemical plants, equipment manufacturing and chemical industry, respectively. The total emissions of PFOA and PFOS were similar, with amount of 4431 kg and 4335 kg, respectively. Atmospheric deposition was the largest source, accounting for 93.2% of total PFOA and 69.6% of PFOS, respectively. In addition, due to application of aqueous film-forming foams (AFFFs) and sulfluramid, disposal of sewage sludge and stacking of solid waste, emission of PFOA and PFOS to soil was 1617 kg, accounting for 9.29% of the whole China. In general, pollution in Jiangsu, Shandong and Tianjin was more serious than those in Liaoning and Hebei, which was consistent with industrialization level and size of industrial sectors emitting PFASs.
Показать больше [+] Меньше [-]Why small and medium chemical companies continue to pose severe environmental risks in rural China
2014
He, Guizhen | Zhang, Lei | Mol, Arthur P.J. | Wang, Tieyu | Lü, Yonglong
In China, rural chemical SMEs are often believed to still largely operate below the sustainability radar. This paper investigates to what extent and how chemical SMEs are already experiencing pressure to improve their environmental performance, using an in-depth case study in Jasmine County, Hebei province. The results show that local residents had rather low trust in the environmental improvement promises made by the enterprises and the local government, and disagreed with the proposed improvement plans. Although the power of local residents to influence decision making remained limited, the chemical SMEs started to feel increasing pressures to clean up their business, from governments, local communities and civil society, and international value chain stakeholders. Notwithstanding these mounting pressures chemical SME's environmental behavior and performance has not changed radically for the better. The strong economic ties between local county governments and chemical SMEs continue to be a major barrier for stringent environmental regulation.
Показать больше [+] Меньше [-]