Уточнить поиск
Результаты 1-10 из 55
Source- and polymer-specific size distributions of fine microplastics in surface water in an urban river
2021
Kameda, Yutaka | Yamada, Naofumi | Fujita, Emiko
There is increasing concern about the environmental behaviors of microplastics (MPs), in particular fine MPs (FMPs), such as their concentrations, sources, size distributions, and fragmentation by weathering in waters. However, there is little information about size distributions of MP polymer types and their relationships to their sources. Here, we analyzed concentrations, compositions, and size distributions of 18 polymer types of MPs of >20 μm by micro-Fourier transform infrared spectroscopy with a novel pretreatment method in surface waters at five sites from the headwaters to the mouth of a Japanese river, and in influent and effluent from a sewage treatment plant (STP). The microplastic concentrations ranged from 300 to 1240 particles/m³ in surface waters. Cluster analysis identified two primary sources of MPs: residential wastewater at the headwater site and non-point sources from urban areas at downstream sites; concentrations of chemical contaminants from STPs were much higher at the downstream sites. The median particle sizes (D₅₀) of MPs increased in urban areas at the downstream sites and were larger than those in influent and effluent. These results imply the release of larger MPs from non-point sources in urban areas. The size distributions of each polymer and all MPs could be fitted significantly to the Weibull distribution function. Values of D₅₀, shape parameters, and scale parameters estimated from the functions were useful indicators for evaluating size distributions in detail. A significant positive correlation of D₅₀ with the tensile strengths of virgin polymers among 13 dominant polymers detected in the surface water suggests that the fragmentation properties of each polymer are influenced by its physical strength. Multidimensional analysis with concentrations, polymeric compositions, and size distributions of MPs, including FMPs, could provide useful information about their sources and their environmental behaviors.
Показать больше [+] Меньше [-]Cascading effects of insecticides and road salt on wetland communities
2021
Lewis, Jacquelyn L. | Agostini, Gabriela | Jones, Devin K. | Relyea, Rick A.
Novel stressors introduced by human activities increasingly threaten freshwater ecosystems. The annual application of more than 2.3 billion kg of pesticide active ingredient and 22 billion kg of road salt has led to the contamination of temperate waterways. While pesticides and road salt are known to cause direct and indirect effects in aquatic communities, their possible interactive effects remain widely unknown. Using outdoor mesocosms, we created wetland communities consisting of zooplankton, phytoplankton, periphyton, and leopard frog (Rana pipiens) tadpoles. We evaluated the toxic effects of six broad-spectrum insecticides from three families (neonicotinoids: thiamethoxam, imidacloprid; organophosphates: chlorpyrifos, malathion; pyrethroids: cypermethrin, permethrin), as well as the potentially interactive effects of four of these insecticides with three concentrations of road salt (NaCl; 44, 160, 1600 Cl⁻ mg/L). Organophosphate exposure decreased zooplankton abundance, elevated phytoplankton biomass, and reduced tadpole mass whereas exposure to neonicotinoids and pyrethroids decreased zooplankton abundance but had no significant effect on phytoplankton abundance or tadpole mass. While organophosphates decreased zooplankton abundance at all salt concentrations, effects on phytoplankton abundance and tadpole mass were dependent upon salt concentration. In contrast, while pyrethroids had no effects in the absence of salt, they decreased zooplankton and phytoplankton density under increased salt concentrations. Our results highlight the importance of multiple-stressor research under natural conditions. As human activities continue to imperil freshwater systems, it is vital to move beyond single-stressor experiments that exclude potentially interactive effects of chemical contaminants.
Показать больше [+] Меньше [-]Use of chemical concentration changes in coastal sediments to compute oil exposure dates
2020
Xia, Junfei | Zhang, Wei | Ferguson, Alesia C. | Mena, Kristina D. | Özgökmen, Tamay M. | Solo-Gabriele, Helena M.
Oil spills can result in changes in chemical contaminant concentrations along coastlines. When concentrations are measured along the Gulf of Mexico over time, this information can be used to evaluate oil spill shoreline exposure dates. The objective of this research was to identify more accurate oil exposure dates based on oil spill chemical concentrations changes (CCC) within sediments in coastal zones after oil spills. The results could be used to help improve oil transport models and to improve estimates of oil landings within the nearshore. The CCC method was based on separating the target coastal zone into segments and then documenting the timing of large increases in concentration for specific oil spill chemicals (OSCs) within each segment. The dataset from the Deepwater Horizon (DWH) oil spill was used to illustrate the application of the method. Some differences in exposure dates were observed between the CCC method and between oil spill trajectories. Differences may have been caused by mixing at the freshwater and sea water interface, nearshore circulation features, and the possible influence of submerged oil that is unaccounted for by oil spill trajectories. Overall, this research highlights the benefit of using an integrated approach to confirm the timing of shoreline exposure.
Показать больше [+] Меньше [-]The utilization of reclaimed water: Possible risks arising from waterborne contaminants
2019
Deng, Shenxi | Yan, Xueting | Zhu, Qingqing | Liao, Chunyang
Increasing interest of seeking substitutable water resources accrues from shortage of freshwater. One of the options considered is reclaimed water (also designated as recycled water) that has been widely used in daily life. Although reclaimed water can serve as a feasible reliever of water pressure, attention about its technologies and potential risks is growing in the meantime. Most established wastewater treatment plants (WWTPs) predate many new contaminants, which means treatment processes cannot ensure to dislodge certain contaminants completely from origin water. Furthermore, a wide range of factors, such as seasons and influent variations, affect occurrence and concentration of reclaimed water-borne contaminants, making research about quality of reclaimed water especially significant. Many reclaimed water-borne contaminants, including biological and chemical contaminants, are toxic to human health, and complex wastewater matrix may aggravate water quality of concern. The widespread use of reclaimed water continues to be a concern on agriculture, ecological environment and human health. This study aims to: 1) provide a critical review about occurrence and profiles of diverse contaminants in the treated reclaimed water, 2) discuss the possibility to avoid the secondary pollution in reuse of reclaimed water, and 3) reveal the prospective consequences of using reclaimed water on agriculture, ecological environment and human health.
Показать больше [+] Меньше [-]Could benthic biofilm analyses be used as a reliable proxy for freshwater environmental health?
2019
Pu, Yang | Ngan, Wing Yui | Yao, Yuan | Habimana, Olivier
The quality of freshwater undoubtedly reflects the health of our surrounding environment, society, and economy, as these are supported by various freshwater ecosystems. Monitoring efforts have therefore been considered a vital means of ensuring the ecological health of freshwater environments. Nevertheless, most aquatic environmental monitoring strategies largely focus on bulk water sampling for analysis of physicochemical and key biological indicators, which for the most part do not consider pollution events that occur at any time between sampling events. Because benthic biofilms are ubiquitous in aquatic environments, pollution released during sporadic events may be absorbed by these biofilms, which can act as repositories of pollutants. The aim of this study was to assess whether benthic biofilm monitoring could provide an efficient way of properly characterizing the extent of pollution in aquatic environments. Here, bulk water and benthic biofilms were sampled from three Hong Kong streams having various pollution profiles, and subsequently compared via high-resolution microscopy, metagenomic analysis, and analytical chemistry. The results indicated that biofilms were, indeed, reservoirs of environmental pollutants, having different profiles compared with that of the corresponding bulk water samples. Moreover, the results also suggested that biofilms sampled in polluted areas were characterized by a higher species richness. While the analytical testing of benthic biofilms still needs further development, the integration of chemical-pollutant profiles and biofilm sequencing data in future studies may provide unique perspectives for understanding and identifying pollution-related biofilm biomarkers.
Показать больше [+] Меньше [-]Coexistence and association between heavy metals, tetracycline and corresponding resistance genes in vermicomposts originating from different substrates
2019
Liu, Kuan | Sun, Mingming | Ye, Mao | Chao, Huizhen | Zhao, Yuanchao | Xia, Bing | Jiao, Wentao | Feng, Yanfang | Zheng, Xiaoxuan | Liu, Manqiang | Jiao, Jiaguo | Hu, Feng
Coexistence of antibiotics/heavy metals and the overexpression of resistance genes in the vermicompost has become an emerging environmental issue. Little is known about the interaction and correlation between chemical pollutants and biological macromolecular compounds. In this study, three typical vermicompost samples were selected from the Yangtze River Delta region in China to investigate the antibiotic, heavy metal and corresponding antibiotic resistance genes (ARGs) and heavy metal resistance genes (HRGs). The results indicated the prevalence of tetracycline (TC), copper (Cu), zinc (Zn), cadmium (Cd), corresponding TC-resistance genes (tetA, tetC, tetW, tetM, tetO, and tetS) and HRGs (copA, pcoA, cusA, czcA, czcB, and czcR) in the three vermicompost samples. In addition, the ARG level was positively associated with the water-soluble TC fraction in the vermicompost, and it was same between the HRG abundance and exchangeable heavy metal content (p < 0.05). Moreover, a positive correlation was found between ARG and HRG abundance in the vermicompost samples, suggesting a close regulation mechanism involving the expression of both genes. The result obtained here could provide new insight into the controlling risk of heavy metals, TC, and relevant resistance genes mixed contamination in the vermicompost.
Показать больше [+] Меньше [-]Partitioning of chemical contaminants to microplastics: Sorption mechanisms, environmental distribution and effects on toxicity and bioaccumulation
2019
Tourinho, Paula S. | Kočí, Vladimír | Loureiro, Susana | van Gestel, Cornelis A.M.
There is an increasing awareness of the threats posed by the worldwide presence of microplastics (MPs) in the environment. Due to their high persistence, MPs will accumulate in the environment and their quantities tend to increase with time. MPs end up in environments where often also chemical contaminants are present. Since the early 2000s, the number of studies on the sorption of chemicals to plastic particles has exponentially increased. The objective of this study was to critically review the literature to identify the most important factors affecting the sorption of chemical contaminants to MPs. These factors include the physicochemical properties of both the MPs and the chemical contaminants as well as environmental characteristics. A limited number of studies on soil together with an increased notion of the importance of this compartment as a final sink for MPs was observed. Therefore, we assessed the distribution of model chemicals (two PCBs and phenanthrene) in the soil compartment in the presence of MPs using a mass balance model. The results showed a high variation among chemicals and microplastic types. Overall, a higher partitioning to MPs of chemical contaminants in soil is expected in comparison to aquatic environments. As sorption to a large extent determines bioavailability, the effects of combined exposure to chemicals and MPs on the toxicity and bioaccumulation in biota are discussed. Finally, some considerations regarding sorption and toxicity studies using MPs are given.
Показать больше [+] Меньше [-]Charting a path towards non-destructive biomarkers in threatened wildlife: A systematic quantitative literature review
2018
Chaousis, Stephanie | Leusch, Frederic D.L. | van de Merwe, Jason P.
Threatened species are susceptible to irreversible population decline caused by adverse sub-lethal effects of chemical contaminant exposure. It is therefore vital to develop the necessary tools to predict and detect these effects as early as possible. Biomarkers of contaminant exposure and effect are widely applied to this end, and a significant amount of research has focused on development and validation of sensitive and diagnostic biomarkers. However, progress in the use biomarkers that can be measured using non-destructive techniques has been relatively slow and there are still many difficulties to overcome in the development of sound methods. This paper systematically quantifies and reviews studies that have aimed to develop or validate non-destructive biomarkers in wildlife, and provides an analysis of the successes of these methods based on the invasiveness of the methods, the potential for universal application, cost, and the potential for new biomarker discovery. These data are then used to infer what methods and approaches appear the most effective for successful development of non-destructive biomarkers of contaminant exposure in wildlife. This review highlights that research on non-destructive biomarkers in wildlife is severely lacking, and suggests further exploration of in vitro methods in future studies.
Показать больше [+] Меньше [-]Relationships between plastic litter and chemical pollutants on benthic biodiversity
2018
D’Alessandro, Michela | Esposito, Valentina | Porporato, Erika M.D. | Berto, Daniela | Renzi, Monia | Giacobbe, Salvatore | Scotti, Gianfranco | Consoli, Pierpaolo | Valastro, Gaetano | Andaloro, Franco | Romeo, Teresa
Five Descriptors (D) of Marine Strategy Framework Directive (MSFD): marine litter (D10), non-indigenous species (D2) and organic and inorganic pollutants (D8), were estimated in a coastal area of GSA 16 (Augusta harbour, Central Mediterranean Sea) in order to study their effects on the biodiversity (D1) of the benthic community D6) and to improve data for the MSFD. Investigation of plastic debris had led to the identification of 38 fragments divided into four categories, among which microplastics resulted as the most abundant. Six non-indigenous species, belonging to Polychaeta (Kirkegaardia dorsobranchialis, Notomastus aberans, Pista unibranchia, Pseudonereis anomala, Branchiomma bairdi) and Mollusca (Brachidontes pharaonis) were found. Biodiversity and benthic indices suggested a generalised, slightly disturbed ecological status. Anthracene, Zinc and Chrome were the most abundant chemical compounds in analysed sediments. Significant correlations were found between the abundance of trace elements vs biotic indices and between plastic debris vs biodiversity and benthic indices. This study represents the first report about the abundance of plastic debris and its relationship to contaminants and infauna in Augusta harbour. Our results can provide useful information for national and international laws and directives.
Показать больше [+] Меньше [-]Acute toxicity of Bisphenol A (BPA) to tropical marine and estuarine species from different trophic groups
2021
Naveira, Clarissa | Rodrigues, Nathália | Santos, Fernanda S. | Santos, Luciano N. | Neves, Raquel A.F.
BPA is chemical pollutant of very high concern due to its toxicity to the environment and risks for human health. Environmental concern consists in BPA entrance into aquatic ecosystems due to acute and chronic toxicity to invertebrates and vertebrates. This study aimed to determine acute BPA toxicity to tropical estuarine-marine species of four trophic levels and integrate BPA toxicity values using species sensitivity distribution (SSD) analysis. Our hypothesis is that BPA toxicity increases towards higher trophic levels. Microalga (Tetraselmis sp.), zooplanktonic grazer (Artemia salina), deposit-feeder invertebrate (Heleobia australis), and omnivorous fish (Poecilia vivipara) were chosen as experimental models. Tetraselmis sp. showed the highest BPA tolerance, without a concentration-dependent response. Species sensitivity have increased from A. salina (LC₅₀,₉₆ₕ = 107.2 mg L⁻¹), followed by H. australis (LC₅₀,₉₆ₕ = 11.53.5 mg L⁻¹), to P. vivipara (LC₅₀,₉₆ₕ = 3.5 mg L⁻¹). Despite the toxicity hierarchy towards trophic levels, which partially supported our hypothesis, SSD did not evidence a clear pattern among estuarine-marine trophic groups. Our study disclosed the sensitivity of not yet investigated species to BPA and, in an integrative way, highlighted BPA toxic effects at different trophic levels. Although estimated acute hazardous concentration (HC5 = 1.18 mg L⁻¹) for estuarine and marine species was higher than environmentally relevant concentrations, sublethal adverse effects induced by BPA exposure may lead to unbalances in population levels and consequently affect the ecological functioning of tropical coastal systems.
Показать больше [+] Меньше [-]