Уточнить поиск
Результаты 1-10 из 128
Effects of heavy metals stress on chicken manures composting via the perspective of microbial community feedback
2022
Chen, Xiaomeng | Du, Zhuang | Guo, Tong | Wu, Junqiu | Wang, Bo | Wei, Zimin | Jia, Liming | Kang, Kejia
Heavy metal pollution was the main risk during livestock manures composting, in which microorganisms played a vital role. However, response strategies of microbial community to heavy metals stress (HMS) remained largely unclear. Therefore, the objective of this study was to reveal the ecological adaptation and counter-effect of bacterial community under HMS during chicken manures composting, and evaluating environmental implications of HMS on composting. The degradation of organic matters (more than 6.4%) and carbohydrate (more than 19.8%) were enhanced under intense HMS, suggesting that microorganisms could quickly adapt to the HMS to ensure smooth composting. Meanwhile, HMS increased keystone nodes and strengthened significant positive correlation relationships between genera (p < 0.05), indicating that bacteria resisted HMS through cooperating during composting. In addition, different bacterial groups performed various functions to cope with HMS. Specific bacterial groups responded to HMS, and certain groups regulated bacterial networks. Therefore, bacterial community had the extraordinary potential to deal with HMS and guarantee chicken manures composting even in the presence of high concentrations of heavy metals.
Показать больше [+] Меньше [-]Enzymatic probe sonication for quick extraction of total bisphenols from animal-derived foods: Applicability to occurrence and exposure assessment
2022
Xiao, Zhiming | Wang, Shi | Suo, Decheng | Wang, Ruiguo | Huang, Yuan | Su, Xiaoou
A high demand exists in bisphenols (BPs) screening studies for quick, reliable and straightforward analytical methods that generate data faster and simultaneously. Herein, we describe a combination of enzymatic probe sonication (EPS) and ultra-performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) for quick extraction and simultaneous quantification of eight important BPs in animal-derived foods. Results obtained demonstrated that the ultrasonic probe power could not only enhance the enzymatic hydrolysis efficiency, but also accelerate the liquid-liquid extraction procedure. Under optimized EPS parameters, one sample could be exhaustively extracted within 120 s, as compared with 12 h needed for the conventional enzymatic extraction which is more suitable for high-throughput analysis. The method was successfully applied to analyze residual BPs in animal-derived foods collected from Beijing, China. Widespread occurrence of BPA, BPS, BPF, BPAF, BPP, and BPB were found, with detection frequencies of 65.2%, 42.4%, 33.7%, 29.4%, 28.3%, and 27.2%, respectively. The highest total concentration levels of BPs (sum of the eight BPs analyzed, ΣBPs) were found in chicken liver (mean 12.2 μg/kg), followed by swine liver (6.37 μg/kg), bovine muscle (3.24 μg/kg), egg (2.03 μg/kg), sheep muscle (2.03 μg/kg), chicken muscle (1.45 μg/kg), swine muscle (1.42 μg/kg), and milk (1.17 μg/kg). The estimated daily intake (EDI) of BPs, based on the mean and 95th percentile concentrations and daily food consumptions, was estimated to be 5.687 ng/kg bw/d and 22.71 ng/kg bw/d, respectively. The human health risk assessment in this work suggests that currently BPs do not pose significant risks to the consumers because the hazard index (HI) was <1.
Показать больше [+] Меньше [-]Novel delipidated chicken feather waste-derived carbon-based molybdenum oxide nanocomposite as efficient electrocatalyst for rapid detection of hydroquinone and catechol in environmental waters
2022
Ganesan, Sivarasan | Sivam, Sadha | Elancheziyan, Mari | Senthilkumar, Sellappan | Ramakrishan, Sankar Ganesh | Soundappan, Thiagarajan | Ponnusamy, Vinoth Kumar
Chicken poultry industry produces a vast amount of feather waste and is often disposed into landfills, creating environmental pollution. Therefore, we explored the valorization of chicken feather waste into lipids and keratinous sludge biomass. This study demonstrates the successful utilization of keratinous sludge biomass as a unique precursor for the facile preparation of novel keratinous sludge biomass-derived carbon-based molybdenum oxide (KSC@MoO₃) nanocomposite material using two-step (hydrothermal and co-pyrolysis) processes. The surface morphology and electrochemical properties of as-prepared nanocomposite material were analyzed using HR-SEM, XRD, XPS, and cyclic voltammetric techniques. KSC@MoO₃ nanocomposite exhibited prominent electrocatalytic behavior to simultaneously determine hydroquinone (HQ) and catechol (CC) in environmental waters. The as-prepared electrochemical sensor showed excellent performance towards the detection of HQ and CC with broad concentration ranges between 0.5–176.5 μM (HQ and CC), and the detection limits achieved were 0.063 μM (HQ) and 0.059 μM (CC). Furthermore, the developed modified electrode has exhibited excellent stability and reproducibility and was also applied to analyze HQ and CC in environmental water samples. Results revealed that chicken feather waste valorization could result in sustainable biomass conversion into a high-value nanomaterial to develop a cost-effective electrochemical environmental monitoring sensor and lipids for biofuel.
Показать больше [+] Меньше [-]Hexafluoropropylene oxide dimer acid (HFPO-DA) induced developmental cardiotoxicity and hepatotoxicity in hatchling chickens: Roles of peroxisome proliferator activated receptor alpha
2021
Xu, Xiaohui | Ni, Hao | Guo, Yajie | Lin, Yongfeng | Ji, Jing | Jin, Congying | Yuan, Fuchong | Feng, Mengxiao | Ji, Na | Zheng, Yuxin | Jiang, Qixiao
Hexafluoropropylene oxide dimer acid (HFPO-DA) is a perfluorooctanoic acid (PFOA) substitute. In the current study, potential developmental cardiotoxicity and hepatotoxicity following HFPO-DA exposure in chicken embryo has been investigated, focusing on the roles of peroxisome proliferator activated receptor alpha (PPARα), the major molecular target in PFOA-induced toxicities. HFPO-DA was exposed to fertile chicken eggs via air cell injection, morphology and function of the target organs (heart and liver) in hatchlings were investigated with histopathology and electrocardiography, and the serum levels of HFPO-DA had been measured with quadrupole-time of flight liquid chromatograph-mass spectrometer (Q-TOF LC/MS). Additionally, lentivirus-mediated in ovo PPARα silencing was used to assess the roles of PPARα in HFPO-DA induced developmental toxicities. The results indicated that developmental exposure to HFPO-DA induced developmental cardiotoxicity, including thinned right ventricular wall and elevated heart rates, similar to those observed with PFOA exposure, as well as developmental hepatotoxicity in the form of steatosis. Silencing of PPARα alleviated such effects, suggesting participation of PPARα in HFPO-DA induced developmental toxicities in chicken embryo. Moreover, enhanced expression of PPARα downstream genes, cluster of differentiation 36 (CD36) and enoyl-CoA hydratase and 3-hydroxyacyl CoA dehydrogenase (EHHADH), were observed in HFPO-DA exposed animal heart tissues, which can be abolished by PPARα silencing. On the other hand, liver-type fatty acid binding protein (L-FABP) and CD36 expression were effectively enhanced in exposed liver tissues, but not EHHADH, suggesting differential mechanism of toxicity in heart and liver tissues. In summary, developmental exposure to HFPO-DA induced developmental cardiotoxicity and hepatotoxicity in hatchling chickens similar to PFOA, and PPARα still participates in such toxicities, with some differential downstream gene regulations in different organs. Further investigation on HFPO-DA-induced developmental toxicities is guaranteed.
Показать больше [+] Меньше [-]Assessment of pops contaminated sites and the need for stringent soil standards for food safety for the protection of human health
2019
Weber, R. | Bell, L. | Watson, A. | Petrlik, J. | Paun, M.C. | Vijgen, J.
Persistent organic pollutants (POPs) including PCDD/Fs, PCBs and organochlorine pesticides (OCPs) are among the most important and hazardous pollutants of soil. Food producing animals such as chicken, beef, sheep and goats can take up soil while grazing or living outdoors (free-range) and this can result in contamination.In recent decades, large quantities of brominated flame retardants such as polybrominated diphenyl ethers (PBDEs), short-chain chlorinated paraffins (SCCPs) and per- and polyfluorinated alkylated substances (PFAS) have been produced and released into the environment and this has resulted in widespread contamination of soils and other environmental matrices. These POPs also bioaccumulate and can contaminate food of animal origin resulting in indirect exposure of humans.Recent assessments of chicken and beef have shown that surprisingly low concentrations of PCBs and PCDD/Fs in soil can result in exceedances of regulatory limits in food. Soil contamination limits have been established in a number of countries for PCDD/Fs but it has been shown that the contamination levels which result in regulatory limits in food (the maximum levels in the European Union) being exceeded, are below all the existing soil regulatory limits. ‘Safe’ soil levels are exceeded in many areas around emission sources of PCDD/Fs and PCBs. On the other hand, PCDD/F and dioxin-like PCB levels in soil in rural areas, without a contamination source, are normally safe for food producing animals housed outdoors resulting in healthy food (e.g. meat, eggs, milk).For the majority of POPs (e.g. PBDEs, PFOS, PFOA, SCCP) no regulatory limits in soils exist.There is, therefore, an urgent need to develop appropriate and protective soil standards minimising human exposure from food producing animals housed outdoors. Furthermore, there is an urgent need to eliminate POPs pollution sources for soils and to control, secure and remediate contaminated sites and reservoirs, in order to reduce exposure and guarantee food safety.
Показать больше [+] Меньше [-]Dried blood spots for estimating mercury exposure in birds
2018
Perkins, Marie | Basu, Niladri
Mercury (Hg) is a pervasive environmental contaminant that can impair avian health, consequently there is a need to gauge exposures. Bird blood provides a measure of recent dietary exposure to Hg, but blood collection and storage can be complex and costly. Dried blood spots (DBS) may help overcome challenges of whole blood analyses, therefore, this study aimed to develop and validate a novel method to assess Hg exposure in birds using DBS. First, accuracy and precision of blood Hg concentrations for entire DBS and DBS punches were determined for white leghorn chicken (Gallus gallus domesticus) dosed with methylmercury (MeHg) via egg injection. Next, we investigated Hg stability in chicken DBS subjected to time, temperature, and humidity treatments. Lastly, we applied the method to DBS created using standard field methods from zebra finch (Taeniopygia guttatato) in the laboratory and American golden-plover (Pluvalis dominica) sampled in the field. All samples were analyzed for total Hg (THg) using direct Hg analysis. Accuracy was determined by comparing DBS concentrations with those of corresponding whole blood and reported as percent recovery. Accuracy for entire chicken DBS was 101.8 ± 5.4%, while DBS punches revealed lower recovery (87.7 ± 4.0 to 92.4 ± 4.1%). There was little effect of time, temperature, and humidity storage treatments on Hg concentrations of DBS, with mean DBS THg concentrations within ±8% of whole blood (n = 10 treatments). For zebra finch, DBS punches were more accurate (93.7 ± 9.7%) compared to entire DBS (126.8 ± 19.4%). While for American golden-plover, entire DBS resulted in the most accurate THg concentrations (111.5 ± 7.6%) compared to DBS punches (edge: 115.4 ± 18.9%, interior: 131.4 ± 16.1%). Overall, results indicate that DBS analysis using direct Hg analysis can accurately evaluate Hg exposure in birds.
Показать больше [+] Меньше [-]Validation and application of quantitative PCR assays using host-specific Bacteroidales genetic markers for swine fecal pollution tracking
2017
Fan, Lihua | Shuai, Jiangbing | Zeng, Ruoxue | Mo, Hongfei | Wang, Suhua | Zhang, Xiaofeng | He, Yongqiang
Genome fragment enrichment (GFE) method was applied to identify host-specific bacterial genetic markers that differ among different fecal metagenomes. To enrich for swine-specific DNA fragments, swine fecal DNA composite (n = 34) was challenged against a DNA composite consisting of cow, human, goat, sheep, chicken, duck and goose fecal DNA extracts (n = 83). Bioinformatic analyses of 384 non-redundant swine enriched metagenomic sequences indicated a preponderance of Bacteroidales-like regions predicted to encode metabolism-associated, cellular processes and information storage and processing. After challenged against fecal DNA extracted from different animal sources, four sequences from the clone libraries targeting two Bacteroidales- (genes 1–38 and 3–53), a Clostridia- (gene 2–109) as well as a Bacilli-like sequence (gene 2–95), respectively, showed high specificity to swine feces based on PCR analysis. Host-specificity and host-sensitivity analysis confirmed that oligonucleotide primers and probes capable of annealing to select Bacteroidales-like sequences (1–38 and 3–53) exhibited high specificity (>90%) in quantitative PCR assays with 71 fecal DNAs from non-target animal sources. The two assays also demonstrated broad distributions of corresponding genetic markers (>94% positive) among 72 swine feces. After evaluation with environmental water samples from different areas, swine-targeted assays based on two Bacteroidales-like GFE sequences appear to be suitable quantitative tracing tools for swine fecal pollution.
Показать больше [+] Меньше [-]Mercury risk in poultry in the Wanshan Mercury Mine, China
2017
Yin, Runsheng | Zhang, Wei | Sun, Guangyi | Feng, Zhaohui | Hurley, James P. | Yang, Liyuan | Shang, Lihai | Feng, Xinbin
In this study, total mercury (THg) and methylmercury (MeHg) concentrations in muscles (leg and breast), organs (intestine, heart, stomach, liver) and blood were investigated for backyard chickens, ducks and geese of the Wanshan Mercury Mine, China. THg in poultry meat products range from 7.9 to 3917.1 ng/g, most of which exceeded the Chinese national standard limit for THg in meat (50 ng/g). Elevated MeHg concentrations (0.4–62.8 ng/g) were also observed in meat products, suggesting that poultry meat can be an important human MeHg exposure source. Ducks and geese showed higher Hg levels than chickens. For all poultry species, the highest Hg concentrations were observed in liver (THg: 23.2–3917.1 ng/g; MeHg: 7.1–62.8 ng/g) and blood (THg: 12.3–338.0 ng/g; MeHg: 1.4–17.6 ng/g). We estimated the Hg burdens in chickens (THg: 15.3–238.1 μg; MeHg: 2.2–15.6 μg), ducks (THg: 15.3–238.1 μg; MeHg: 3.5–14.7 μg) and geese (THg: 83.8–93.4 μg; MeHg: 15.4–29.7 μg). To not exceed the daily intake limit for THg (34.2 μg/day) and MeHg (6 μg/day), we suggested that the maximum amount (g) for chicken leg, breast, heart, stomach, intestine, liver, and blood should be 1384, 1498, 2315, 1214, 1081, 257, and 717, respectively; the maximum amount (g) for duck leg, breast, heart, stomach, intestine, liver, and blood should be 750, 1041, 986, 858, 752, 134, and 573, respectively; and the maximum amount (g) for goose leg, breast, heart, stomach, intestine, liver, and blood should be 941, 1051, 1040, 1131, 964, 137, and 562, respectively.
Показать больше [+] Меньше [-]Habitat- and species-dependent accumulation of organohalogen pollutants in home-produced eggs from an electronic waste recycling site in South China: Levels, profiles, and human dietary exposure
2016
Zeng, Yan-Hong | Luo, Xiao-Jun | Tang, Bin | Mai, Bi-Xian
Organohalogen pollutants (OHPs) including chlorinated paraffins (CPs), polybrominated diphenyl ethers (PBDEs) and other halogenated flame retardants (OHFRs) (dechlorane plus (DP), decabromodiphenyl ethane (DBDPE), 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE), hexabromobenzene (HBB), hexabromocyclododecanes (HBCDs) and tetrabromobisphenol A (TBBPA)) originating from an e-waste recycling area in Guiyu, southern China were investigated in chicken and goose eggs. As expected, OHP concentrations were higher in chicken eggs collected from the location (site 1) approaching the e-waste recycling center than from the location (site 2) far from the e-waste recycling center. Also, much higher OHP levels were observed in goose eggs foraging in residential area (site 2) than that in agricultural area (site 1), suggesting a clear habitat dependent OHP bioaccumulation pattern both concerning distance from e-waste activities and type of foraging habitat. Goose eggs exhibited higher short chain chlorinated paraffins (SCCPs) concentrations but lower PBDE and OHFR levels than chicken eggs. The proportion of high brominated PBDEs (hepta-to deca-BDEs) was lower in goose eggs than that in chicken eggs and showed a clear decrease from site 1 to site 2. DP isomeric composition fanti values (the ratio of the anti-DP to the sum of the anti- and syn-DP) in goose eggs were significantly lower than those in chicken eggs (p < 0.001). These differences are likely a reflection of factors such as the species-specific differences in habitat preference and the differing environmental behaviors of the pollutants owing to their inherent properties (such as solubility and vapor pressure). Our findings suggested a high dietary intake of OHPs via home-produced eggs. For BDE99 there is a potential health concern with respect to the current dietary exposure via eggs.
Показать больше [+] Меньше [-]Lead poisoning of backyard chickens: Implications for urban gardening and food production
2022
Yazdanparast, Tahereh | Strezov, Vladimir | Wieland, Peter | Lai, Yi-Jen | Jacob, Dorrit E. | Taylor, Mark Patrick
Increased interest in backyard food production has drawn attention to the risks associated with urban trace element contamination, in particular lead (Pb) that was used in abundance in Pb-based paints and gasoline. Here we examine the sources, pathways and risks associated with environmental Pb in urban gardens, domestic chickens and their eggs. A suite of other trace element concentrations (including As, Cd, Cr, Cu, Hg, Mn, Ni, Pb, Zn) are reported from the sampled matrices. Sixty-nine domestic chickens from 55 Sydney urban gardens were sampled along with potential sources (feed, soil, water), blood Pb concentrations and corresponding concentrations in eggs. Age of the sampled chickens and house age was also collected. Commercial eggs (n = 9) from free range farms were analysed for comparative purposes. Study outcomes were modelled using the large Australian VegeSafe garden soil database (>20,000 samples) to predict which areas of inner-city Sydney, Melbourne and Brisbane are likely to have soil Pb concentrations unsuitable for keeping backyard chickens. Soil Pb concentrations was a strong predictor of chicken blood and egg Pb (p=<0.00001). Almost 1 in 2 (n = 31/69) chickens had blood Pb levels >20 μg/dL, the level at which adverse effects may be observed. Older homes were correlated with higher chicken blood Pb (p = 0.00002) and egg Pb (p = 0.005), and younger chickens (<12 months old) had greater Pb concentrations, likely due to increased Pb uptake during early life development. Two key findings arose from the study data: (i) in order to retain chicken blood Pb below 20 μg/dL, soil Pb needs to be < 166 mg/kg; (ii) to retain egg Pb < 100 μg/kg (i.e. a food safety benchmark value), soil Pb needs to be < 117 mg/kg. These concentrations are significantly lower than the soil Pb guideline of 300 mg/kg for residential gardens. This research supports the conclusion that a large number of inner-city homes may not be suitable for keeping chickens and that further work regarding production and consumption of domestic food is warranted.
Показать больше [+] Меньше [-]