Уточнить поиск
Результаты 1-10 из 27
The toxicity of graphene oxide affected by algal physiological characteristics: A comparative study in cyanobacterial, green algae, diatom Полный текст
2020
Yin, Jingyu | Fan, Wenhong | Du, Juan | Feng, Weiying | Dong, Zhaomin | Liu, Yingying | Zhou, Tingting
Though the main toxic mechanisms of graphene oxide (GO) to algae have been accepted as the shading effect, oxidative stress and mechanical damage, the effect of algal characteristics on these three mechanisms of GO toxicity have seldom been taken into consideration. In this study, we investigated GO toxicity to green algae (Chlorella vulgaris, Scenedesmus obliquus, Chlamydomonas reinhardtii), cyanobacteria (Microcystis aeruginosa) and diatoms (Cyclotella sp.). The aim was to assess how the physiological characteristics of algae affect the toxicity of GO. Results showed that 10 mg/L of GO significantly inhibited the growth of all tested algal types, while S. obliquus and C. reinhardtii were found to be the most susceptible and tolerant species, respectively. Then, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) were used to observe the physiological characteristics of the assessed algae. The presence of locomotive organelles, along with smaller and more spherical cells, was more likely to alleviate the shading effect. Variations in cell wall composition led to different extents of mechanical damage as shown by Cyclotella sp. silica frustules and S. obliquus autosporine division being prone to damage. Meanwhile, growth inhibition and cell division were significantly correlated with the oxidative stress and membrane permeability, suggesting the latter two indicators can effectively signal GO toxicity to algae. The findings of this study provide novel insights into the toxicity of graphene materials in aquatic environments.
Показать больше [+] Меньше [-]Comparative study of Cu uptake and early transcriptome responses in the green microalga Chlamydomonas reinhardtii and the macrophyte Elodea nuttallii Полный текст
2019
Beauvais-Flück, Rebecca | Slaveykova, Vera I. | Cosio, Claudia
Microalgae are widely used as representative primary producers in ecotoxicology, while macrophytes are much less studied. Here we compared the bioavailability and cellular toxicity pathways of 2 h-exposure to 10−6 mol L−1 Cu in the macrophyte Elodea nuttallii and the green microalga Chlamydomonas reinhardtii.Uptake rate was similar but faster in the algae than in the macrophyte, while RNA-Sequencing revealed a similar number of regulated genes. Early-regulated genes were congruent with expected adverse outcome pathways for Cu with Gene Ontology terms including gene regulation, energy metabolism, transport, cell processes, stress, antioxidant metabolism and development. However, the gene regulation level was higher in E. nuttallii than in C. reinhardtii and several categories were more represented in the macrophyte than in the microalga. Moreover, several categories including oxidative pentose phosphate pathway (OPP), nitrate metabolism and metal handling were only found for E. nuttallii, whereas categories such as cell motility, polyamine metabolism, mitochondrial electron transport and tricarboxylic acid cycle (TCA) were unique to C. reinhardtii. These differences were attributed to morphological and metabolic differences and highlighted dissimilarities between a sessile and a mobile species. Our results highlight the efficiency of transcriptomics to assess early molecular responses in biota, and the importance of studying more aquatic plants for a better understanding on the impact and fate of environmental contaminants.
Показать больше [+] Меньше [-]Effect of erythromycin and modulating effect of CeO2 NPs on the toxicity exerted by the antibiotic on the microalgae Chlamydomonas reinhardtii and Phaeodactylum tricornutum Полный текст
2018
Sendra, Marta | Moreno-Garrido, Ignacio | Blasco, Julián | Araújo, Cristiano V.M.
Erythromycin is an antibiotic employed in the treatment of infections caused by Gram positive microorganisms and the increasing use has made it a contaminant of emerging concern in aqueous ecosystems. Cerium oxide nanoparticles (CeO₂ NPs), which are known to have catalytic and antioxidant properties, have also become contaminants of emerging concern. Due to the high reactivity of CeO₂ NPs, they can interact with erythromycin magnifying their effects or on the other hand, considering the redox potential of CeO₂ NPs, it can alleviate the toxicity of erythromycin. The present study was carried out to assess the toxicity of both single compounds as well as mixed on Chlamydomonas reinhardtii and Phaeodactylum tricornutum (freshwater and marine microalgae respectively) employed as target species in ecotoxicological tests. Mechanisms of oxidative damage and those harmful to the photosynthetic apparatus were studied in order to know the toxic mechanisms of erythromycin and the joint effects with CeO₂ NPs. Results showed that erythromycin inhibited the microalgae population growth and effective quantum yield of PSII (E.Q.Y.) in both microalgae. However, the freshwater microalgae Chlamydomonas reinhardtii was more sensitive than the marine diatom Phaeodactylum tricornutum. Responses related to the photosynthetic apparatus such as E.Q.Y. was affected by the exposure to erythromycin of both microalgae, as chloroplasts are target organelle for this antibiotic.Mixed experiments (CeO₂ NPs + erythromycin) showed the protective role of CeO₂ NPs in both microalgae preventing erythromycin toxicity in toxicological responses such as the growth of the microalgae population and E.Q.Y.
Показать больше [+] Меньше [-]Effect of mercury on the polyphosphate level of alga Chlamydomonas reinhardtii Полный текст
2018
Samadani, Mahshid | Dewez, David
In this study, the accumulation and toxicity effect of 1–7 μM of Hg was determined during 24–72 h on two strains of Chlamydomonas reinhardtii, CC-125 and CC-503 as a cell wall-deficient mutant, by monitoring the growth rate and the maximum quantum yield of Photosystem II. In addition, the level of extracytoplasmic polyphosphates (polyP related to the cell wall) was determined to understand the polyP physiological role in Hg-treated algal cells. The results showed that the polyP level was higher in the strain CC-125 compared to CC-503. When algal cells were exposed to 1 and 3 μM of Hg, the accumulation of Hg was correlated with the degradation of polyP for both strains. These results suggested that the degradation of polyP participated in the sequestration of Hg. In fact, this mechanism might explain at 72 h the recovery of the polyP level, the efficiency of maximum PSII quantum yield, the low inhibition of growth rate, and the low accumulated Hg in algal biomass. Under the effect of 5 and 7 μM of Hg, the degradation of polyP was complete and could not be recovered, which was caused by a high accumulation and toxicity of Hg already at 24 h. Our results demonstrated that the change of polyP level was correlated with the accumulation and effect of Hg on algal cells during 24–72 h, which can be used as a biomarker of Hg toxicity. Therefore, this study suggested that extracytoplasmic polyP in C. reinhardtii contributed to the cellular tolerance for Hg.
Показать больше [+] Меньше [-]Biouptake of a rare earth metal (Nd) by Chlamydomonas reinhardtii – Bioavailability of small organic complexes and role of hardness ions Полный текст
2018
Yang, Guang | Wilkinson, Kevin J.
A green alga, Chlamydomonas reinhardtii, was used to verify whether a simple Biotic Ligand Model (BLM) could be used to predict carefully controlled short-term biouptake for the lanthanide, Nd. In the absence of ligands or competitors, Nd biouptake was well described by a Michaelis-Menten equation with an affinity constant, KNd, of 10⁶.⁸ M⁻¹ and a maximum internalization flux of Jₘₐₓ = 1.70 × 10⁻¹⁴ mol cm⁻² s⁻¹. For bi-metal mixtures containing Nd and Ca, Mg, Sm or Eu, Nd uptake could also be well modelled by assigning experimentally determined affinity constants of KCₐ = 10².⁶ M⁻¹, KMg = 10³.⁴ M⁻¹, KSₘ = 10⁶.⁵ M⁻¹ and KEᵤ = 10⁶.⁵ M⁻¹. The similar values of Kₘ and Jₘₐₓ for the three rare earth elements (REEs): Sm, Eu and Nd is consistent with them sharing a common metal uptake site. On the other hand, in the presence of the small organic ligands (citric or malic acid), neither, free or total Nd concentrations could be used to quantitatively predict Nd internalization fluxes. In other words, in order to predict biouptake by simple BLM determinations, it was necessary to consider that the Nd complexes were bioavailable. The data strongly suggest that risk evaluations of the REE will require a new paradigm and new tools for evaluating bioavailability.
Показать больше [+] Меньше [-]Laccase-mediated transformation of triclosan in aqueous solution with metal cations and humic acid Полный текст
2017
Sun, Kai | Kang, Fuxing | Waigi, Michael Gatheru | Gao, Yanzheng | Huang, Qingguo
Triclosan (TCS) is a broad-spectrum antimicrobial agent that is found extensively in natural aquatic environments. Enzyme-catalyzed oxidative coupling reactions (ECOCRs) can be used to remove TCS in aqueous solution, but there is limited information available to indicate how metal cations (MCs) and natural organic matter (NOM) influence the environmental fate of TCS during laccase-mediated ECOCRs. In this study, we demonstrated that the naturally occurring laccase from Pleurotus ostreatus was effective in removing TCS during ECOCRs, and the oligomerization of TCS was identified as the dominant reaction pathway by high-resolution mass spectrometry (HRMS). The growth inhibition studies of green algae (Chlamydomonas reinhardtii and Scenedesmus obliquus) proved that laccase-mediated ECOCRs could effectively reduce the toxicity of TCS. The presence of dissolved MCs (Mn²⁺, Al³⁺, Ca²⁺, Cu²⁺, and Fe²⁺ ions) influenced the removal and transformation of TCS via different mechanisms. Additionally, the transformation of TCS in systems with NOM derived from humic acid (HA) was hindered, and the apparent pseudo first-order kinetics rate constants (k) for TCS decreased as the HA concentration increased, which likely corresponded to the combined effect of both noncovalent (sorption) and covalent binding between TCS and humic molecules. Our results provide a novel insight into the fate and transformation of TCS by laccase-mediated ECOCRs in natural aquatic environments in the presence of MCs and NOM.
Показать больше [+] Меньше [-]Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation Полный текст
2017
Sendra, M. | Moreno-Garrido, I. | Yeste, M.P. | Gatica, J.M. | Blasco, J.
Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation Полный текст
2017
Sendra, M. | Moreno-Garrido, I. | Yeste, M.P. | Gatica, J.M. | Blasco, J.
Use of titanium dioxide nanoparticles (TiO2 NPs) has become a part of our daily life and the high environmental concentrations predicted to accumulate in aquatic ecosystems are cause for concern. Although TiO2 has only limited reactivity, at the nanoscale level its physico-chemical properties and toxicity are different compared with bulk material. Phytoplankton is a key trophic level in fresh and marine ecosystems, and the toxicity provoked by these nanoparticles can affect the structure and functioning of ecosystems. Two microalgae species, one freshwater (Chlamydomonas reinhardtii) and the other marine (Phaeodactylum tricornutum), have been selected for testing the toxicity of TiO2 in NP and conventional bulk form and, given its photo-catalytic properties, the effect of UV-A was also checked. Growth inhibition, quantum yield reduction, increase of intracellular ROS production, membrane cell damage and production of exo-polymeric substances (EPS) were selected as variables to measure.TiO2 NPs and bulk TiO2 show a relationship between the size of agglomerates and time in freshwater and saltwater, but not in ultrapure water. Under two treatments, UV-A (6 h per day) and no UV-A exposure, NPs triggered stronger cytotoxic responses than bulk material. TiO2 NPs were also associated with greater production of reactive oxygen species and damage to membrane. However, microalgae exposed to TiO2 NPs and bulk TiO2 under UV-A were found to be more sensitive than in the visible light condition. The marine species (P. tricornutum) was more sensitive than the freshwater species, and higher Ti internalization was measured. Exopolymeric substances (EPS) were released from microalgae in the culture media, in the presence of TiO2 in both forms. This may be a possible defense mechanism by these cells, which would enhance processes of homoagglomeration and settling, and thus reduce bioavailability.
Показать больше [+] Меньше [-]Toxicity of TiO2, in nanoparticle or bulk form to freshwater and marine microalgae under visible light and UV-A radiation Полный текст
2017
Sendra, Marta | Moreno-Garrido, Ignacio | Yeste, María Pilar | Gatica, José Manuel | Blasco, Julián | Junta de Andalucía | Ministerio de Economía y Competitividad (España) | European Commission
Use of titanium dioxide nanoparticles (TiO2 NPs) has become a part of our daily life and the high environmental concentrations predicted to accumulate in aquatic ecosystems are cause for concern. Although TiO2 has only limited reactivity, at the nanoscale level its physico-chemical properties and toxicity are different compared with bulk material. Phytoplankton is a key trophic level in fresh and marine ecosystems, and the toxicity provoked by these nanoparticles can affect the structure and functioning of ecosystems. Two microalgae species, one freshwater (Chlamydomonas reinhardtii) and the other marine (Phaeodactylum tricornutum), have been selected for testing the toxicity of TiO2 in NP and conventional bulk form and, given its photo-catalytic properties, the effect of UV-A was also checked. Growth inhibition, quantum yield reduction, increase of intracellular ROS production, membrane cell damage and production of exo-polymeric substances (EPS) were selected as variables to measure. TiO2 NPs and bulk TiO2 show a relationship between the size of agglomerates and time in freshwater and saltwater, but not in ultrapure water. Under two treatments, UV-A (6 h per day) and no UV-A exposure, NPs triggered stronger cytotoxic responses than bulk material. TiO2 NPs were also associated with greater production of reactive oxygen species and damage to membrane. However, microalgae exposed to TiO2 NPs and bulk TiO2 under UV-A were found to be more sensitive than in the visible light condition. The marine species (P. tricornutum) was more sensitive than the freshwater species, and higher Ti internalization was measured. Exopolymeric substances (EPS) were released from microalgae in the culture media, in the presence of TiO2 in both forms. This may be a possible defense mechanism by these cells, which would enhance processes of homoagglomeration and settling, and thus reduce bioavailability. | This research has been funded by the Junta de Andalucía (PE2011-RNM-7812 project and FQM-110 group) and the Spanish National Research Plan (CTM2012-38720-C03-03) and FEDER fundings (MAT2013-40823-R). | Peer reviewed
Показать больше [+] Меньше [-]Effect of fluoride on the cell viability, cell organelle potential, and photosynthetic capacity of freshwater and soil algae Полный текст
2016
Chae, Yooeun | Kim, Dokyung | An, Youn-Joo
Although fluoride occurs naturally in the environment, excessive amounts of fluoride in freshwater and terrestrial ecosystems can be harmful. We evaluated the toxicity of fluoride compounds on the growth, viability, and photosynthetic capacity of freshwater (Chlamydomonas reinhardtii and Pseudokirchneriella subcapitata) and terrestrial (Chlorococcum infusionum) algae. To measure algal growth inhibition, a flow cytometric method was adopted (i.e., cell size, granularity, and auto-fluorescence measurements), and algal yield was calculated to assess cell viability. Rhodamine123 and fluorescein diacetate were used to evaluate mitochondrial membrane potential (MMA, ΔΨm) and cell permeability. Nine parameters related to the photosynthetic capacity of algae were also evaluated. The results indicated that high concentrations of fluoride compounds affected cell viability, cell organelle potential, and photosynthetic functions. The cell viability measurements of the three algal species decreased, but apoptosis was only observed in C. infusionum. The MMA (ΔΨm) of cells exposed to fluoride varied among species, and the cell permeability of the three species generally decreased. The decrease in the photosynthetic activity of algae may be attributable to the combination of fluoride ions (F−) with magnesium ions (Mg2+) in chlorophyll. Our results therefore provide strong evidence for the potential risks of fluoride compounds to microflora and microfauna in freshwater and terrestrial ecosystems.
Показать больше [+] Меньше [-]Trophic transfer of gold nanoparticles from Euglena gracilis or Chlamydomonas reinhardtii to Daphnia magna Полный текст
2015
Lee, Woo-Mi | Yoon, Sung-Ji | Shin, Yu-Jin | An, Youn-Joo
Understanding the trophic transfer of nanoparticles (NPs) is important because NPs are small enough to easily penetrate into organisms. In this study, we evaluated the trophic transfer of gold NPs (AuNPs) within the aquatic food chain. We observed AuNPs transfer from 2 species of primary producers (Chlamydomonas reinhardtii or Euglena gracilis) to the primary consumer (Daphnia magna). Also, bioaccumulation of AuNPs in E. gracilis was higher than that in C. reinhardtii. The reasons for the difference in Au accumulation may be the physical structure of these organisms, and the surface area that is available for interaction with NPs. C. reinhardtii has a cell wall that may act as a barrier to the penetration of NPs. The size of E. gracilis is larger than that of C. reinhardtii. This study demonstrates the trophic transfer of AuNPs from a general producer to a consumer in an aquatic environment.
Показать больше [+] Меньше [-]Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii Полный текст
2014
Bravo, Andrea Garcia | Le Faucheur, Séverine | Monperrus, Mathilde | Amouroux, David | Slaveykova, Vera I.
Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii Полный текст
2014
Bravo, Andrea Garcia | Le Faucheur, Séverine | Monperrus, Mathilde | Amouroux, David | Slaveykova, Vera I.
The present study demonstrates that species-specific isotope tracing is an useful tool to precisely measure Hg accumulation and transformations capabilities of living organisms at concentrations naturally encountered in the environment. To that end, a phytoplanktonic green alga Chlamydomonas reinhardtii Dangeard (Chlamydomonadales, Chlorophyceae) was exposed to mixtures of 199-isotopically enriched inorganic mercury (199IHg) and of 201-isotopically enriched monomethylmercury (201CH3Hg) at a concentration range between less than 1 pM to 4 nM. Additionally, one exposure concentration of both mercury species was also studied separately to evaluate possible interactive effects. No difference in the intracellular contents was observed for algae exposed to 199IHg and 201CH3Hg alone or in their mixture, suggesting similar accumulation capacity for both species at the studied concentrations. Demethylation of 201CH3Hg was observed at the highest exposure concentrations, whereas no methylation was detected.
Показать больше [+] Меньше [-]Species-specific isotope tracers to study the accumulation and biotransformation of mixtures of inorganic and methyl mercury by the microalga Chlamydomonas reinhardtii Полный текст
2014
Bravo, Andrea G. | Le Faucheur, Séverine | Monperrus, Mathilde | Amouroux, David | Slaveykova, Vera I.
4 pages, 1 figure, 2 tables, supplementary data https://doi.org/10.1016/j.envpol.2014.05.013 | The present study demonstrates that species-specific isotope tracing is an useful tool to precisely measure Hg accumulation and transformations capabilities of living organisms at concentrations naturally encountered in the environment. To that end, a phytoplanktonic green alga Chlamydomonas reinhardtii Dangeard (Chlamydomonadales, Chlorophyceae) was exposed to mixtures of 199-isotopically enriched inorganic mercury (199IHg) and of 201-isotopically enriched monomethylmercury (201CH3Hg) at a concentration range between less than 1 pM to 4 nM. Additionally, one exposure concentration of both mercury species was also studied separately to evaluate possible interactive effects. No difference in the intracellular contents was observed for algae exposed to 199IHg and 201CH3Hg alone or in their mixture, suggesting similar accumulation capacity for both species at the studied concentrations. Demethylation of 201CH3Hg was observed at the highest exposure concentrations, whereas no methylation was detected | Peer reviewed
Показать больше [+] Меньше [-]