Уточнить поиск
Результаты 1-4 из 4
Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate.
2008
Labanowski , Jérome (INRA , Versailles (France). UR 0251 Physico-chimie et Ecotoxicologie des Sols d'agrosystèmes contaminés) | Monna , Fabrice (Centre National de la Recherche Scientifique, Dijon(France). Univ. de Bourgogne Centre des Sciences de la Terre) | Bermond , Alain (INRA , Thiverval-Grignon (France). UMR 1091 Environnement et Grandes Cultures) | Cambier , Philippe (INRA , Versailles (France). UR 0251 Physico-chimie et Ecotoxicologie des Sols d'agrosystèmes contaminés) | Fernandez , Christelle (INRA , Versailles (France). UR 0251 Physico-chimie et Ecotoxicologie des Sols d'agrosystèmes contaminés) | Lamy , Isabelle (INRA , Versailles (France). UR 0251 Physico-chimie et Ecotoxicologie des Sols d'agrosystèmes contaminés) | Van Oort , Folkert (INRA , Versailles (France). UR 0251 Physico-chimie et Ecotoxicologie des Sols d'agrosystèmes contaminés)
Kinetic EDTA and citrate extractions were used to mimic metal mobilization in a soil contaminated by metallurgical fallout. Modeling of metal removal rates vs. time distinguished two metal pools: readily labile (QM1) and less labile (QM2). In citrate extractions, total extractability (QM1 + QM2) of Zn and Cd was proportionally higher than for Pb and Cu. Proportions of Pb and Cu extracted with EDTA were three times higher than when using citrate. We observed similar QM1/QM2 ratios for Zn and Cu regardless of the extractant, suggesting comparable binding energies to soil constituents. However, for Pb and Cd, more heterogeneous binding energies were hypothesized to explain different kinetic extraction behaviors. Proportions of citrate-labile metals were found consistent with their short-term, in-situ mobility assessed in the studied soil, i.e., metal amount released in the soil solution or extracted by cultivated plants. Kinetic EDTA extractions were hypothesized to be more predictive for long-term metal migration with depth.
Показать больше [+] Меньше [-]Remediation of heavy metal contaminated soils by organic acid extraction and electrochemical adsorption
2020
Yang, Xiong | Liu, Lihu | Tan, Wenfeng | Liu, Chengshuai | Dang, Zhi | Qiu, Guohong
Remediation of heavy metal contaminated soils remains a global challenge. Here, low-molecular-weight organic acids were used to extract Cu and Zn from polluted soils, and the extracted heavy metals were subsequently adsorbed by activated carbon electrodes. The electrochemical adsorption mechanism as well as the influence of pH, organic acid type and voltage were investigated, and the soil remediation effect was further evaluated by the cultivation of rape. After extraction by citrate at initial pH 8.3 and electrochemical adsorption at 0.9 V for 7 d, the concentrations of total and bioavailable Cu in soils decreased from 1090 to 281 to 391 and 52 mg kg⁻¹, and those of Zn decreased from 262 to 39 to 208 and 30 mg kg⁻¹, respectively. Cu and Zn ions were mainly electrochemically adsorbed on the carbon cathode and anode, respectively, resulting in decreases of their concentrations to below 1 mg L⁻¹ in the leachate. The presence of organic acids improved the remediation performance in the order of citrate > oxalate > acetate. The decrease in the initial pH of citrate solution enhanced the removal rate of Zn, while seemed to have no effect on that of Cu. The removal capacity for heavy metals decreased with decreasing cell voltage from 0.9 to 0.3 V. In the rape cultivation experiment, the Cu and Zn contents in shoot and root were decreased by more than 50%, validating the soil remediation effect. The present work proposes a facile method for heavy metal removal from contaminated soils.
Показать больше [+] Меньше [-]Effects of metals on the microbial mineralization of organic acids
1997
Brynhildsen, L. (Linkoeping Univ. (Sweden). Dept. of Water and Environmental Studies) | Rosswall, T.
Kinetic extractions to assess mobilization of Zn, Pb, Cu, and Cd in a metal-contaminated soil: EDTA vs. citrate.
2008
Labanowski, Jérome | Monna, Fabrice | Bermond, Alain | Cambier, Philippe | Fernandez, Christelle | Lamy, Isabelle | Van Oort, Folkert
Kinetic EDTA and citrate extractions were used to mimic metal mobilization in a soil contaminated by metallurgical fallout. Modeling of metal removal rates vs. time distinguished two metal pools: readily labile (QM1) and less labile (QM2). In citrate extractions, total extractability (QM1 + QM2) of Zn and Cd was proportionally higher than for Pb and Cu. Proportions of Pb and Cu extracted with EDTA were three times higher than when using citrate. We observed similar QM1/QM2 ratios for Zn and Cu regardless of the extractant, suggesting comparable binding energies to soil constituents. However, for Pb and Cd, more heterogeneous binding energies were hypothesized to explain different kinetic extraction behaviors. Proportions of citrate-labile metals were found consistent with their short-term, in-situ mobility assessed in the studied soil, i.e., metal amount released in the soil solution or extracted by cultivated plants. Kinetic EDTA extractions were hypothesized to be more predictive for long-term metal migration with depth.
Показать больше [+] Меньше [-]