Уточнить поиск
Результаты 1-10 из 673
Global climatic changes: modelling the potential responses of agro-ecosystems with special reference to crop protection.
1995
Goudriaan J. | Zadoks J.C.
Metagenomics highlights the impact of climate and human activities on antibiotic resistance genes in China's estuaries
2022
Zheng, Dongsheng | Yin, Guoyu | Liu, Min | Hou, Lijun | Yang, Yi | Liu, Xinran | Jiang, Yinghui | Chen, Cheng | Wu, Han
Estuarine environments faced with contaminations from coastal zones and the inland are vital sinks of antibiotic resistance genes (ARGs). However, little is known about the temporal-spatial pattern of ARGs and its predominant constraints in estuarine environments. Here, we leveraged metagenomics to investigate ARG profiles from 16 China's estuaries across 6 climate zones in dry and wet seasons, and disentangled their relationships with environmental constraints. Our results revealed that ARG abundance, richness, and diversity in dry season were higher than those in wet season, and ARG abundance exhibited an increasing trend with latitude. The prevalence of ARGs was significantly driven by human activities, mobile gene elements, microbial communities, antibiotic residuals, physicochemical properties, and climatic variables. Among which, climatic variables and human activities ranked the most important factors, contributing 44% and 36% of the total variance of observed ARGs, respectively. The most important climatic variable shaping ARGs is temperature, where increasing temperature is associated with decreased ARGs. Our results highlight that the prevalence of ARGs in estuarine environments would be co-driven by anthropogenic activities and climate, and suggest the dynamics of ARGs under future changing climate and socioeconomic development.
Показать больше [+] Меньше [-]Multigenerational inspections of environmental thermal perturbations promote metabolic trade-offs in developmental stages of tropical fish
2022
Wang, Min-Chen | Furukawa, Fumiya | Wang, Jingwei | Peng, Hui-Wen | Lin, Ching-Chun | Lin, Tzu-Hao | Tseng, Yung-Che
Global warming both reduces global temperature variance and increases the frequency of extreme weather events. In response to these ambient perturbations, animals may be subject to trans- or intra-generational phenotype modifications that help to maintain homeostasis and fitness. Here, we show how temperature-associated transgenerational plasticity in tilapia affects metabolic trade-offs during developmental stages under a global warming scenario. Tropical tilapia reared at a stable temperature of 27 °C for a decade were divided into two temperature-experience groups for four generations of breeding. Each generation of one group was exposed to a single 15 °C cold-shock experience during its lifetime (cold-experienced CE group), and the other group was kept stably at 27 °C throughout their lifetimes (cold-naïve CN group). The offspring at early life stages from the CE and CN tilapia were then assessed by metabolomics-based profiling, and the results implied that parental cold-experience might affect energy provision during reproduction. Furthermore, at early life stages, progeny may be endowed with metabolic traits that help the animals cope with ambient temperature perturbations. This study also applied the feature rescaling and Uniform Manifold Approximation and Projection (UMAP) to visualize metabolic dynamics, and the result could effectively decompose the complex omic-based datasets to represent the energy trade-off variability. For example, the carbohydrate to free amino acid conversion and enhanced compensatory features appeared to be hypothermic-responsive traits. These multigenerational metabolic effects suggest that the tropical ectothermic tilapia may exhibit transgenerational phenotype plasticity, which could optimize energy allocation under ambient temperature challenges. Knowledge about such metabolism-related transgenerational plasticity effects in ectothermic aquatic species may allow us to better predict how adaptive mechanisms will affect fish populations in a climate with narrow temperature variation and frequent extreme weather events.
Показать больше [+] Меньше [-]A wide range of toxic VOCs measured by dual-sorbent passive sampling with validation by field online measurements
2022
Lee, Yu-Hsun | Wang, Chieh-Heng | Hsu, Pei-Hsuan | Hsieh, Hsin-Cheng | Wang, Jia-Lin
This study modified a passive sampling technique similar to the US EPA Method 325 A/B method but extended to include more toxic volatile organic compounds (VOCs) under varied climate conditions to enhance field applicability. A mixing chamber was built to determine uptake rates (Us) for the target compounds. It was found that the Us of 27 air toxics previously reported in the literature agreed reasonably well with our findings within 18%, thus proving the chamber's integrity. To broaden the compound coverage, both Carbopack X and Carboxen 569 were studied for a suite of toxic VOCs to meet stringent quality control (QC) criteria of correlation coefficients (R-square), method detection limits (MDL), back diffusion (BD), storage stability, as well as a wide range of climate conditions in temperature and humidity. After excluding the species that failed to pass any of the QC criteria, Carbopack X was found to fit 50 air toxics, whereas Carboxen 569 held 37. After excluding the overlapped species, 61 toxic VOCs can be determined with robust Us for a broad range of climate conditions when the two sorbents are used in pairs. A one-week field measurement was conducted to compare with the online thermal desorption gas chromatography-mass spectrometry (TD-GC-MS) with hourly data resolution. The field passive sampling showed comparable results to the means of the online hourly measurements, despite the high variability of selected target compounds, such as toluene from 0.3 ppbv as the 5th percentile to the maximum of about 80 ppbv. Passive sampling clearly demonstrated the ability to smooth out concentration variability and thus the time-averaging strength of toxic VOCs, revealing its ideal role as an exposure monitor over time. The passive sampling method can be more desired than active sampling or online methods when the aim is simply the knowledge of prolonged time-averaged concentrations.
Показать больше [+] Меньше [-]Long-term immobilization of cadmium and lead with biochar in frozen-thawed soils of farmland in China
2022
Liu, Mingxuan | Hou, Renjie | Fu, Qiang | Li, Tianxiao | Zhang, Shoujie | Su, Anshuang
The problem of potentially toxic elements (PTEs) in farmland is a key issue in global pollution prevention and control and has an important impact on environmental safety, human health, and sustainable agricultural development. Based on the climate background of high–latitude cold regions, this study simulated freeze–thaw cycles through indoor tests. Different initial conditions, such as biochar application rates (0%, 1%, 2%) and different initial soil moisture contents (15%, 20%, 25%), were set to explore the morphological changes in cadmium (Cd) and lead (Pb) in soil and the response relationship to the changes in soil physicochemical properties. The results indicate that soil pH decreases during freeze–thaw cycles, and soil alkalinity increases with increasing biochar content. Freeze–thaw cycles caused the total amount of PTEs to have a U–shaped distribution, and the amount of PTEs in the soluble (SOL) and reducible (RED) fraction increased by 0.28–56.19%. Biochar reduced the amount of Cd and Pb migration in the soil, and an increase in soil moisture content reduced the availability of Cd and Pb in the soil. Freezing and thawing damaged the soil structure, and biochar reduced the fractionation of small particle aggregates by enhancing the stability of soil aggregates, thereby reducing the soil's ability to adsorb Cd and Pb. In summary, for farmland soil remediation and pollution control, the application of biochar has a certain ability to optimize soil properties. Considering the distribution of PTEs in the soil and the physicochemical properties of the soil, the application of 1% biochar to soil with a 20% moisture content is optimal for regulating seasonally frozen soil remediation.
Показать больше [+] Меньше [-]Spatiotemporal distribution and environmental control factors of halocarbons in the Yangtze River Estuary and its adjacent marine area during autumn and spring
2022
Zou, Yawen | He, Zhen | Liu, Chunying | Yang, Gui-Peng
The oceanic production and release of volatile halocarbons (VHCs) to the atmosphere play a vital role in regulating the global climate. In this study, seasonal and spatial variations in VHCs, including trichlorofluoromethane (CFC-11), methyl iodide (CH₃I), dibromomethane (CH₂Br₂), and bromoform (CHBr₃), and environmental parameters affecting their concentrations were characterized in the atmosphere and seawater of the Yangtze River Estuary and its adjacent marine area during two cruises from October 17 to October 26, 2019 and from May 12 to May 25, 2020. Significant seasonal variations were observed in the atmosphere and seawater because of seasonal differences in the prevalent monsoon, water mass (Yangtze River Diluted Water), and biogenic production. VHCs concentrations were positively correlated with Chl-a concentrations in the surface water during autumn. The average sea-to-air fluxes of CH₃I, CH₂Br₂, and CHBr₃ in autumn were 19.7, 4.0, and 7.6 nmol m⁻² d⁻¹, respectively, while those in spring were 6.3, 6.4, and −3.6 nmol m⁻² d⁻¹. In the ship-based incubation experiments, ocean acidification and dust deposition had no significant effects on VHCs concentrations. The concentrations of CH₂Br₂ and CHBr₃ were significantly positively correlated with phytoplankton biomass under lower pH condition (M3: pH 7.9). This result indicated that CH₂Br₂ and CHBr₃ concentrations were mainly related to the biological release.
Показать больше [+] Меньше [-]Local environment modulates whole-transcriptome expression in the seagrass Posidonia oceanica under warming and nutrients excess
2022
Pazzaglia, Jessica | Santillán-Sarmiento, Alex | Ruocco, Miriam | Dattolo, Emanuela | Ambrosino, Luca | Marín-Guirao, Lazaro | Procaccini, Gabriele
The intensification of anomalous events of seawater warming and the co-occurrence with local anthropogenic stressors are threatening coastal marine habitats, including seagrasses, which form extensive underwater meadows. Eutrophication highly affects coastal environments, potentially summing up to the widespread effects of global climate changes. In the present study, we investigated for the first time in seagrasses, the transcriptional response of different plant organs (i.e., leaf and shoot apical meristem, SAM) of the Mediterranean seagrass Posidonia oceanica growing in environments with a different history of nutrient enrichment. To this end, a mesocosm experiment exposing plants to single (nutrient enrichment or temperature increase) and multiple stressors (nutrient enrichment plus temperature increase), was performed. Results revealed a differential transcriptome regulation of plants under single and multiple stressors, showing an organ-specific sensitivity depending on plants' origin. While leaf tissues were more responsive to nutrient stress, SAM revealed a higher sensitivity to temperature treatments, especially in plants already impacted in their native environment. The exposure to stress conditions induced the modulation of different biological processes. Plants living in an oligotrophic environment were more responsive to nutrients compared to plants from a eutrophic environment. Evidences that epigenetic mechanisms were involved in the regulation of transcriptional reprogramming were also observed in both plants’ organs. These results represent a further step in the comprehension of seagrass response to abiotic stressors pointing out the importance of local pressures in a global warming scenario.
Показать больше [+] Меньше [-]Attributed radiative forcing of air pollutants from biomass and fossil burning emissions
2022
Jiang, Ke | Fu, Bo | Luo, Zhihan | Xiong, Rui | Men, Yatai | Shen, Huizhong | Li, Bengang | Shen, Guofeng | Tao, Shu
Energy is vital to human society but significantly contributes to the deterioration of environmental quality and the global issue of climate change. Biomass and fossil fuels are important energy sources but have distinct pollutant emission characteristics during the burning process. This study aimed at attributing radiative forcing of climate forcers, including greenhouse gases but also short-lived climate pollutants, from the burning of fossil and biomass fuels, and the spatiotemporal characteristics. We found that air pollutant emissions from the burning process of biofuel and fossil fuels induced RFs of 68.2 ± 36.8 mW m⁻² and 840 ± 225 mW m⁻², respectively. The relatively contribution of biomass burning emissions was 7.6% of that from both fossil and biofuel combustion processes, while its contribution in energy supply was 11%. These relative contributions varied obviously across different regions. The per unit energy consumption of biomass fuel in the developed regions, such as North America (0.57 ± 0.33 mW m⁻²/10⁷TJ) and Western Europe (0.98 ± 0.79 mW m⁻²/10⁷TJ), had higher impacts of combustion emission related RFs compared to that of developing regions, like China (0.40 ± 0.26 mW m⁻²/10⁷TJ), and South and South-East Asia (0.31 ± 0.71 mW m⁻²/10⁷TJ) where low efficiency biomass burning in residential sector produced significant amounts of organic matter that had a cooling effect. Note that the study only evaluated fuel combustion emission related RFs, and those associated with the production of fuels and land use change should be studied later in promoting a comprehensive understanding on the climate impacts of biomass utilization.
Показать больше [+] Меньше [-]Burden of dust storms on years of life lost in Seoul, South Korea: A distributed lag analysis
2022
Jung, Jiyun | Yi, Ŭn-mi | Myung, Woojae | Kim, Hyekyeong | Kim, Ho | Lee, Hyewon
Although dust storms have been associated with adverse health outcomes, studies on the burden of dust storms on deaths are limited. As global warming has induced significant climate changes in recent decades, which have accelerated desertification worldwide, it is necessary to evaluate the burden of dust storm-induced premature mortality using a critical measure of disease burden, such as the years of life lost (YLL). The YLL attributable to dust storms have not been examined to date. This study investigated the association between Asian dust storms (ADS) and the YLL in Seoul, South Korea, during 2002–2013. We conducted a time-series study using a generalized additive model assuming a Gaussian distribution and applied a distributed lag model with a maximum lag of 5 days to investigate the delayed and cumulative effects of ADS on the YLL. We also conducted stratified analyses using the cause of death (respiratory and cardiovascular diseases) and sociodemographic status (sex, age, education level, occupation, and marital status). During the study period, 108 ADS events occurred, and the average daily YLL was 1511 years due to non-accidental causes. The cumulative ADS exposure over the 6-day lag period was associated with a significant increase of 104.7 (95% CI, 31.0–178.5 years) and 34.4 years (4.0–64.7 years) in the YLL due to non-accidental causes and cardiovascular mortality, respectively. Sociodemographic analyses revealed associations between ADS exposure and the YLL in males, both <65 and ≥ 65 years old, those with middle-level education, and the unemployed, unmarried, and widowed (26.5–83.8 years). This study provides new evidence suggesting that exposure to dust storms significantly increases the YLL. Our findings suggest that dust storms are a critical environmental risk affecting premature mortality. These results could contribute to the establishment of public health policies aimed at managing dust storm exposure and reducing premature deaths.
Показать больше [+] Меньше [-]