Уточнить поиск
Результаты 1-10 из 101
Residues of neonicotinoid insecticides in surface sediments in lakes and rivers across Jiangsu Province: Impact of regional characteristics and land use types Полный текст
2022
Huang, Chushan | Wen, Pengchong | Hu, Guocheng | Wang, Juanheng | Wu, Qingyao | Qi, Jianying | Ding, Ping | Cai, Limei | Yu, Yunjiang | Zhang, Lijuan
Neonicotinoid insecticides (NNIs) had been detected in soil and surface water frequently because of extensive use worldwide, however, data regarding regional characteristics and potential influential factors of sediment were scarce. In the present study, eight NNIs were analyzed in 86 surface sediment samples from different regions (central cities, rural areas and suburbs) and land use types (construction land and crop land) in Jiangsu Province. NNIs were widespread in the sediments, with a mean value of 1.73 ± 0.89 ng g⁻¹ dry weight (dw) (ranged from 0.41 to 3.87 ng g⁻¹ dw). Imidaclothiz (IMIZ), dinotefuran (DIN) and nitenpyram (NIT) were the dominant compounds in the surface sediment, accounted for half of combined total. The results of regional distribution analysis show that NNIs were at higher concentrations in rural areas and crop land, while the residues of NNIs in lakes were more severe compare with rivers in Jiangsu Province. Region characteristics and land use types have an influence on residues of NNIs in surface sediment. Principal component analysis showed that residues of NNIs in surface sediment in Jiangsu Province mainly originated from protect grain crops (maize), fruit (apples, pears) and vegetables in agricultural systems. The residues of NNIs were found to be mostly concentrated in the northwest and northeast in Jiangsu Province, where were the area of intensive agriculture. To investigate the residues of NNIs, while identify the contributing factors, could provide a scientific basis for basic of region environment management and pollution control.
Показать больше [+] Меньше [-]The influence of soil acidification on N2O emissions derived from fungal and bacterial denitrification using dual isotopocule mapping and acetylene inhibition Полный текст
2022
Zheng, Qian | Ding, Junjun | Lin, Wei | Yao, Zhipeng | Li, Qiaozhen | Xu, Chunying | Zhuang, Shan | Kou, Xinyue | Li, Yuzhong
Denitrification, as both origins and sinks of N₂O, occurs extensively, and is of critical importance for regulating N₂O emissions in acidified soils. However, whether soil acidification stimulates N₂O emissions, and if so for what reason contributes to stimulate the emissions is uncertain and how the N₂O fractions from fungal (ffD) and bacterial (fbD) denitrification change with soil pH is unclear. Thus, a pH gradient (6.2, 7.1, 8.7) was set via manipulating cropland soils (initial pH 8.7) in North China to illustrate the effect of soil acidification on fungal and bacterial denitrification after the addition of KNO₃ and glucose. For source partitioning, we used and compared SP/δ¹⁸O mapping approach (SP/δ¹⁸O MAP) and acetylene inhibition technique combined isotope two endmember mixing model (AIT-IEM). The results showed significantly higher N₂O emissions in the acidified soils (pH 6.2 and pH 7.1) compared with the initial soil (pH 8.7). The cumulative N₂O emissions during the whole incubation period (15 days) ranged from 7.1 mg N kg⁻¹ for pH 8.7–18.9 mg N kg⁻¹ for pH 6.2. With the addition of glucose, relative to treatments without glucose, this emission also increased with the decrement of pH values, and were significantly stimulated. Similarly, the highest N₂O emissions and N₂O/(N₂O + N₂) ratios (rN₂O) were observed in the pH 6.2 treatment. But the difference was the highest cumulative N₂O + N₂ emissions, which were recorded in the pH 7.1 treatment based on SP/δ¹⁸O MAP. Based on both approaches, ffD values slightly increased with the acidification of soil, and bacterial denitrification was the dominant pathway in all treatments. The SP/δ¹⁸O MAP data indicated that both the rN₂O and ffD were lower compared to AIT-IEM. It has been known for long that low pH may lead to high rN₂O of denitrification and ffD, but our documentation of a pervasive pH-control of rN₂O and ffD by utilizing combined SP/δ¹⁸O MAP and AIT-IEM is new. The results of the evaluated N₂O emissions by acidified soils are finely explained by high rN₂O and enhanced ffD. We argue that soil pH management should be high on the agenda for mitigating N₂O emissions in the future, particularly for regions where long-term excessive nitrogen fertilizer is likely to acidify the soils.
Показать больше [+] Меньше [-]Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates Полный текст
2022
Panico, Speranza C. | van Gestel, Cornelis A.M. | Verweij, Rudo A. | Rault, Magali | Bertrand, Colette | Menacho Barriga, Carlos A. | Coeurdassier, Michaël | Fritsch, Clémentine | Gimbert, Frédéric | Pelosi, Céline
Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates Полный текст
2022
Panico, Speranza C. | van Gestel, Cornelis A.M. | Verweij, Rudo A. | Rault, Magali | Bertrand, Colette | Menacho Barriga, Carlos A. | Coeurdassier, Michaël | Fritsch, Clémentine | Gimbert, Frédéric | Pelosi, Céline
Massive use of pesticides in conventional agriculture leads to accumulation in soil of complex mixtures, triggering questions about their potential ecotoxicological risk. This study assessed cropland soils containing pesticide mixtures sampled from conventional and organic farming systems at La Cage and Mons, France. The conventional agricultural field soils contained more pesticide residues (11 and 17 versus 3 and 11, respectively) and at higher concentrations than soils from organic fields (mean 6.6 and 10.5 versus 0.2 and 0.6 μg kg⁻¹, respectively), including systemic insecticides belonging to neonicotinoids, carbamate herbicides and broad-spectrum fungicides mostly from the azole family. A risk quotient (RQᵢ) approach evaluated the toxicity of the pesticide mixtures in soil, assuming concentration addition. Based on measured concentrations, both conventional agricultural soils posed high risks to soil invertebrates, especially due to the presence of epoxiconazole and imidacloprid, whereas soils under organic farming showed negligible to medium risk. To confirm the outcome of the risk assessment, toxicity of the soils was determined in bioassays following standardized test guidelines with seven representative non-target invertebrates: earthworms (Eisenia andrei, Lumbricus rubellus, Aporrectodea caliginosa), enchytraeids (Enchytraeus crypticus), Collembola (Folsomia candida), oribatid mites (Oppia nitens), and snails (Cantareus aspersus). Collembola and enchytraeid survival and reproduction and land snail growth were significantly lower in soils from conventional compared to organic agriculture. The earthworms displayed different responses: L. rubellus showed higher mortality on soils from conventional agriculture and large body mass loss in all field soils, E. andrei showed considerable mass loss and strongly reduced reproduction, and A. caliginosa showed significantly reduced acetylcholinesterase activity in soils from conventional agriculture. The oribatid mites did not show consistent differences between organic and conventional farming soils. These results highlight that conventional agricultural practices pose a high risk for soil invertebrates and may threaten soil functionality, likely due to additive or synergistic “cocktail effects”.
Показать больше [+] Меньше [-]Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates Полный текст
2022
Panico, Speranza, C | van Gestel, Cornelis, a M | Verweij, Rudo, A | Rault, Magali | Bertrand, Colette | Menacho Barriga, Carlos, A | Coeurdassier, Michaël | Fritsch, Clémentine | Gimbert, Frédéric | Pélosi, Céline | Vrije Universiteit Brussel (VUB) | University of Naples Federico II = Università degli studi di Napoli Federico II | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This study was performed within the framework of the “PING” research project, funded by the M´etaprogramme INRAe SMaCH Call2017. The study also benefited from results obtained during the “RESCAPE” research project, action led by the Ministry for Agricultureand Food and the Ministry for an Ecological and Solidary Transition, with the financial support of the French Biodiversity Agency on“Resistance and Pesticides” research call, with the fees for diffuse pollution coming from the Ecophyto Plan through the national agencyONEMA.
International audience | Massive use of pesticides in conventional agriculture leads to accumulation in soil of complex mixtures, triggering questions about their potential ecotoxicological risk. This study assessed cropland soils containing pesticide mixtures sampled from conventional and organic farming systems at La Cage and Mons, France. The conventional agricultural field soils contained more pesticide residues (11 and 17 versus 3 and 11, respectively) and at higher concentrations than soils from organic fields (mean 6.6 and 10.5 versus 0.2 and 0.6 μg kg − 1 , respectively), including systemic insecticides belonging to neonicotinoids, carbamate herbicides and broadspectrum fungicides mostly from the azole family. A risk quotient (RQ i) approach evaluated the toxicity of the pesticide mixtures in soil, assuming concentration addition. Based on measured concentrations, both conventional agricultural soils posed high risks to soil invertebrates, especially due to the presence of epoxiconazole and imidacloprid, whereas soils under organic farming showed negligible to medium risk. To confirm the outcome of the risk assessment, toxicity of the soils was determined in bioassays following standardized test guidelines with seven representative non-target invertebrates: earthworms (Eisenia andrei, Lumbricus rubellus, Aporrectodea caliginosa), enchytraeids (Enchytraeus crypticus), Collembola (Folsomia candida), oribatid mites (Oppia nitens), and snails (Cantareus aspersus). Collembola and enchytraeid survival and reproduction and land snail growth were significantly lower in soils from conventional compared to organic agriculture. The earthworms displayed different responses: L. rubellus showed higher mortality on soils from conventional agriculture and large body mass loss in all field soils, E. andrei showed considerable mass loss and strongly reduced reproduction, and A. caliginosa showed significantly reduced acetylcholinesterase activity in soils from conventional agriculture. The oribatid mites did not show consistent differences between organic and conventional farming soils. These results highlight that conventional agricultural practices pose a high risk for soil invertebrates and may threaten soil functionality, likely due to additive or synergistic "cocktail effects". ☆ This paper has been recommended for acceptance by Montes Marques.
Показать больше [+] Меньше [-]Field mixtures of currently used pesticides in agricultural soil pose a risk to soil invertebrates Полный текст
2022
Panico, Speranza, C | van Gestel, Cornelis, a M | Verweij, Rudo, A | Rault, Magali | Bertrand, Colette | Menacho Barriga, Carlos, A | Coeurdassier, Michaël | Fritsch, Clémentine | Gimbert, Frédéric | Pélosi, Céline | Vrije Universiteit Brussel [Bruxelles] (VUB) | University of Naples Federico II = Università degli studi di Napoli Federico II | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | This study was performed within the framework of the “PING” research project, funded by the M´etaprogramme INRAe SMaCH Call2017. The study also benefited from results obtained during the “RESCAPE” research project, action led by the Ministry for Agricultureand Food and the Ministry for an Ecological and Solidary Transition, with the financial support of the French Biodiversity Agency on“Resistance and Pesticides” research call, with the fees for diffuse pollution coming from the Ecophyto Plan through the national agencyONEMA.
International audience | Massive use of pesticides in conventional agriculture leads to accumulation in soil of complex mixtures, triggering questions about their potential ecotoxicological risk. This study assessed cropland soils containing pesticide mixtures sampled from conventional and organic farming systems at La Cage and Mons, France. The conventional agricultural field soils contained more pesticide residues (11 and 17 versus 3 and 11, respectively) and at higher concentrations than soils from organic fields (mean 6.6 and 10.5 versus 0.2 and 0.6 μg kg − 1 , respectively), including systemic insecticides belonging to neonicotinoids, carbamate herbicides and broadspectrum fungicides mostly from the azole family. A risk quotient (RQ i) approach evaluated the toxicity of the pesticide mixtures in soil, assuming concentration addition. Based on measured concentrations, both conventional agricultural soils posed high risks to soil invertebrates, especially due to the presence of epoxiconazole and imidacloprid, whereas soils under organic farming showed negligible to medium risk. To confirm the outcome of the risk assessment, toxicity of the soils was determined in bioassays following standardized test guidelines with seven representative non-target invertebrates: earthworms (Eisenia andrei, Lumbricus rubellus, Aporrectodea caliginosa), enchytraeids (Enchytraeus crypticus), Collembola (Folsomia candida), oribatid mites (Oppia nitens), and snails (Cantareus aspersus). Collembola and enchytraeid survival and reproduction and land snail growth were significantly lower in soils from conventional compared to organic agriculture. The earthworms displayed different responses: L. rubellus showed higher mortality on soils from conventional agriculture and large body mass loss in all field soils, E. andrei showed considerable mass loss and strongly reduced reproduction, and A. caliginosa showed significantly reduced acetylcholinesterase activity in soils from conventional agriculture. The oribatid mites did not show consistent differences between organic and conventional farming soils. These results highlight that conventional agricultural practices pose a high risk for soil invertebrates and may threaten soil functionality, likely due to additive or synergistic "cocktail effects". ☆ This paper has been recommended for acceptance by Montes Marques.
Показать больше [+] Меньше [-]Elucidating the differentiation of soil heavy metals under different land uses with geographically weighted regression and self-organizing map Полный текст
2020
Wang, Zhan | Xiao, Jun | Wang, Lingqing | Liang, Tao | Guo, Qingjun | Guan, Yunlan | Rinklebe, Jörg
Intensive anthropogenic activity has triggered serious heavy metal contamination of soil. Land use and land cover (LULC) changes bear significant impacts, either directly or indirectly, on the distribution of heavy metal in soils. A total of 180 samples were acquired from various land covers at different depths, namely surface soils (020 cm) and subsurface soils (20–40 cm). Spatial interpolation, geographically weighted regression (GWR) and self-organizing map (SOM) were used to discern how variations in the spatial distributions of soil heavy metals were caused by human activities for different land uses, and how these pollutants contributed to environmental risks. The medium concentrations of Cd, Cr, Cu, Pb and Zn in surface soil all exceeded the corresponding local background values in flat cropland and developed area soil. The overall ecological risk level of the study varied from low to medium. The GWR model indicated that the land use intensity had a certain influence on the accumulation of heavy metals in the surface soil. K-means clustering of the SOM revealed that the type of LULC also contributed to the redistribution of heavy metals in the surface soil.
Показать больше [+] Меньше [-]Detection and attribution of nitrogen runoff trend in China's croplands Полный текст
2018
Hou, Xikang | Zhan, Xiaoying | Zhou, Feng | Yan, Xiaoyuan | Gu, Baojing | Reis, Stefan | Wu, Yali | Liu, Hongbin | Piao, Shilong | Tang, Yanhong
Reliable detection and attribution of changes in nitrogen (N) runoff from croplands are essential for designing efficient, sustainable N management strategies for future. Despite the recognition that excess N runoff poses a risk of aquatic eutrophication, large-scale, spatially detailed N runoff trends and their drivers remain poorly understood in China. Based on data comprising 535 site-years from 100 sites across China's croplands, we developed a data-driven upscaling model and a new simplified attribution approach to detect and attribute N runoff trends during the period of 1990–2012. Our results show that N runoff has increased by 46% for rice paddy fields and 31% for upland areas since 1990. However, we acknowledge that the upscaling model is subject to large uncertainties (20% and 40% as coefficient of variation of N runoff, respectively). At national scale, increased fertilizer application was identified as the most likely driver of the N runoff trend, while decreased irrigation levels offset to some extent the impact of fertilization increases. In southern China, the increasing trend of upland N runoff can be attributed to the growth in N runoff rates. Our results suggested that increased SOM led to the N runoff rate growth for uplands, but led to a decline for rice paddy fields. In combination, these results imply that improving management approaches for both N fertilizer use and irrigation is urgently required for mitigating agricultural N runoff in China.
Показать больше [+] Меньше [-]Soil carbon inventory to quantify the impact of land use change to mitigate greenhouse gas emissions and ecosystem services Полный текст
2018
Potma Gonçalves, Daniel Ruiz | Carlos de Moraes Sá, João | Mishra, Umakant | Ferreira Furlan, Flávia Juliana | Ferreira, Lucimara Aparecida | Inagaki, Thiago Massao | Romaniw, Jucimare | de Oliveira Ferreira, Ademir | Briedis, Clever
Currently the land use and land use change (LULUC) emits 1.3 ± 0.5 Pg carbon (C) year⁻¹, equivalent to 8% of the global annual emissions. The objectives of this study were to quantify (1) the impact of LULUC on greenhouse gas (GHG) emissions in a subtropical region and (2) the role of conservation agriculture to mitigate GHG emissions promoting ecosystem services. We developed a detailed IPCC Tier 2 GHG inventory for the Campos Gerais region of southern Brazil that has large cropland area under long-term conservation agriculture with high crop yields. The inventory accounted for historical and current emissions from fossil fuel combustion, LULUC and other minor sources. We used Century model to simulate the adoption of conservation best management practices, to all croplands in the region from 2017 to 2117. Our results showed historical (1930–2017) GHG emissions of 412 Tg C, in which LULUC contributes 91% (376 ± 130 Tg C), the uncertainties ranged between 13 and 36%. Between 1930 and 1985 LULUC was a major source of GHG emission, however from 1985 to 2015 fossil fuel combustion became the primary source of GHG emission. Forestry sequestered 52 ± 24 Tg C in 0.6 Mha in a period of 47 years (1.8 Tg C Mha⁻¹ year⁻¹) and no-till sequestered 30.4 ± 24 Tg C in 2 Mha in a period of 32 years (0.5 Tg C Mha⁻¹ year⁻¹) being the principal GHG mitigating activities in the study area. The model predictions showed that best management practices have the potential to mitigate 13 years of regional emissions (330 Tg C in 100 years) or 105 years of agriculture, forestry and livestock emissions (40 Tg C in 100 years) making the agriculture sector a net carbon (C) sink and promoting ecosystem services.
Показать больше [+] Меньше [-]Quantifying nitrogen leaching response to fertilizer additions in China's cropland Полный текст
2016
Gao, Shuoshuo | Xu, Peng | Zhou, Feng | Yang, Hui | Zheng, Chunmiao | Cao, Wei | Tao, Shu | Piao, Shilong | Zhao, Yue | Ji, Xiaoyan | Shang, Ziyin | Chen, Minpeng
Agricultural soils account for more than 50% of nitrogen leaching (LN) to groundwater in China. When excess levels of nitrogen accumulate in groundwater, it poses a risk of adverse health effects. Despite this recognition, estimation of LN from cropland soils in a broad spatial scale is still quite uncertain in China. The uncertainty of LN primarily stems from the shape of nitrogen leaching response to fertilizer additions (Nrate) and the role of environmental conditions. On the basis of 453 site-years at 51 sites across China, we explored the nonlinearity and variability of the response of LN to Nrate and developed an empirical statistical model to determine how environmental factors regulate the rate of N leaching (LR). The result shows that LN-Nrate relationship is convex for most crop types, and varies by local hydro-climates and soil organic carbon. Variability of air temperature explains a half (∼52%) of the spatial variation of LR. The results of model calibration and validation indicate that incorporating this empirical knowledge into a predictive model could accurately capture the variation in leaching and produce a reasonable upscaling from site to country. The fertilizer-induced LN in 2008 for China's cropland were 0.88 ± 0.23 TgN (1σ), significantly lower than the linear or uniform model, as assumed by Food and Agriculture Organization and MITERRA-EUROPE models. These results also imply that future policy to reduce N leaching from cropland needs to consider environmental variability rather than solely attempt to reduce Nrate.
Показать больше [+] Меньше [-]Assessing the effects of ambient ozone in China on snap bean genotypes by using ethylenediurea (EDU) Полный текст
2015
Yuan, Xiangyang | Calatayud, Vicent | Jiang, Lijun | Manning, William J. | Hayes, Felicity | Tian, Yuan | Feng, Zhaozhong
Four genotypes of snap bean (Phaseolus vulgaris L.) were selected to study the effects of ambient ozone concentration at a cropland area around Beijing by using 450 ppm of ethylenediurea (EDU) as a chemical protectant. During the growing season, the 8h (9:00–17:00) average ozone concentration was very high, approximately 71.3 ppb, and AOT40 was 29.0 ppm.h. All genotypes showed foliar injury, but ozone-sensitive genotypes exhibited much more injury than ozone-tolerant ones. Compared with control, EDU significantly alleviated foliar injury, increased photosynthesis rate and chlorophyll a fluorescence, Vcmax and Jmax, and seed and pod weights in ozone-sensitive genotypes but not in ozone-tolerant genotypes. EDU did not significantly affect antioxidant contents in any of the genotypes. Therefore, EDU effectively protected sensitive genotypes from ambient ozone damage, while protection on ozone-tolerant genotypes was limited. EDU can be regarded as a useful tool in risk assessment of ambient ozone on food security.
Показать больше [+] Меньше [-]Association between risk of birth defects occurring level and arsenic concentrations in soils of Lvliang, Shanxi province of China Полный текст
2014
Wu, Jilei | Zhang, Chaosheng | Pei, Lijun | Chen, Gong | Zheng, Xiaoying
The risk of birth defects is generally accredited with genetic factors, environmental causes, but the contribution of environmental factors to birth defects is still inconclusive. With the hypothesis of associations of geochemical features distribution and birth defects risk, we collected birth records and measured the chemical components in soil samples from a high prevalence area of birth defects in Shanxi province, China. The relative risk levels among villages were estimated with conditional spatial autoregressive model and the relationships between the risk levels of the villages and the 15 types of chemical elements concentration in the cropland and woodland soils were explored. The results revealed that the arsenic levels in cropland soil showed a significant association with birth defects occurring risk in this area, which is consistent with existing evidences of arsenic as a teratogen and warrants further investigation on arsenic exposure routine to birth defect occurring risk.
Показать больше [+] Меньше [-]Biogas final digestive byproduct applied to croplands as fertilizer contains high levels of steroid hormones Полный текст
2013
Rodriguez-Navas, Carlos | Björklund, Erland | Halling-Sørensen, Bent | Hansen, Martin
In this study we evaluate and demonstrate the occurrence of nine natural and one synthetic steroid hormone, including estrogens, androgens and progestagens in biogas final digestate byproduct (digestion liquid) commonly used as an agricultural fertilizer. We investigated two biogas sites that utilize different anaerobic digestion technologies (mesophilic and thermophilic) from swine manure and other organic wastes. Individual hormone concentration levels were observed up to 1478 ng g−1 dry weight or 22.5 mg kg−1 N with estrone and progesterone reaching highest concentration levels. Evaluation of the potential environmental burden through the application in agriculture was also assessed on the basis of predicted environmental concentrations. This study indicates that the biogas digestion process does not completely remove steroid hormones from livestock manure and use of final digestate byproduct on croplands contributes to the environmental emission of hormones.
Показать больше [+] Меньше [-]