Уточнить поиск
Результаты 1-10 из 75
Effect of CeO2 nanoparticles on plant growth and soil microcosm in a soil-plant interactive system
2022
Xie, Changjian | Guo, Zhiling | Zhang, Peng | Yang, Jie | Zhang, Junzhe | Ma, Yuhui | He, Xiao | Lynch, Iseult | Zhang, Zhiyong
The impact of CeO₂ nanoparticles (NPs) on plant physiology and soil microcosm and the underlying mechanism remains unclear to date. This study investigates the effect of CeO₂ NPs on plant growth and soil microbial communities in both the rhizosphere of cucumber seedlings and the surrounding bulk soil, with CeCl₃ as a comparison to identify the contribution of the particulate and ionic form to the phytotoxicity of CeO₂ NPs. The results show that Ce was significantly accumulated in the cucumber tissue after CeO₂ NPs exposure. In the roots, 5.3% of the accumulated Ce has transformed to Ce³⁺. This transformation might take place prior to uptake by the roots since 2.5% of CeO₂ NPs was found transformed in the rhizosphere soil. However, the transformation of CeO₂ NPs in the bulk soil was negligible, indicating the critical role of rhizosphere chemistry in the transformation. CeO₂ NPs treatment induced oxidative stress in the roots, but the biomass of the roots was significantly increased, although the Vitamin C (Vc) content and soluble sugar content were decreased and mineral nutrient contents were altered. The soil enzymatic activity and the microbial community in both rhizosphere and bulk soil samples were altered, with rhizosphere soil showing more prominent changes. CeCl₃ treatment induced similar effects although less than CeO₂ NPs, suggesting that Ce³⁺ released from CeO₂ NPs contributed to the CeO₂ NPs induced impacts on soil health and plant physiology.
Показать больше [+] Меньше [-]Nonstereoselective behavior of novel chiral organophosphorus pesticide Dufulin in cherry radish by different absorption methods
2022
Zheng, Ruonan | Shao, Siyao | Zhang, Subin | Yu, Zhiyang | Zhang, Weiwei | Wu, Tao | Zhou, Xin | Ye, Qingfu
Dufulin is a biologically derived antiviral agent chemically synthesized by α-phosphoramidate in sheep and is effective against viral diseases in plants such as tobacco, rice, cucumber and tomato. However, the environmental behaviors and fate of Dufulin under different cultivation systems remain unknown. This study investigates the absorption, translocation and accumulation of ¹⁴C-Dufulin stereoisomers introduced by pesticide leaf daubing and by mixing the pesticide with soil in different tissues of cherry radish. We particularly focused on whether the behaviors of Dufulin enantiomers in plants were stereoselective. In the leaf uptake experiments, S-Dufulin and R-Dufulin were transported both up and down, while more than 93% of the pesticide remained in the labeled leaves. During the radicular absorption experiments, both enantiomers of Dufulin were taken up by radish roots and moved to the upper part of the plant, while less than 0.2% Dufulin was absorbed from the soil. Hence, it was easier for Dufulin to enter plants through the leaf surface than through the roots. However, we found in this trial that the stereoisomers of Dufulin underwent nonstereoselective absorption and translocation, which implies that rac-Dufulin and its metabolites should be a major research priority. Overall, our results provide a relatively accurate prediction of the risk assessment of Dufulin, which will help guide its rational use in the environment as well as ensure eco-environmental safety and human health.
Показать больше [+] Меньше [-]Differential bioaccumulations and ecotoxicological impacts of metal-oxide nanoparticles, bulk materials, and metal-ions in cucumbers grown in sandy clay loam soil
2021
Ahmed, Bilal | Rizvi, Asfa | Syed, Asad | Jailani, Afreen | Elgorban, Abdallah M. | Khan, Mohammad Saghir | AL-Shwaiman, Hind A. | Lee, Jintae
Expanding applications of metal-oxide nanoparticles (NPs) and increased environmental deposition of NPs followed by their interactions with edible crops threaten yields. This study demonstrates the effects of aging (45 days in soil) of four NPs (ZnO, CuO, Al₂O₃, TiO₂; 3.9–34 nm) and their corresponding metal oxide bulk particles (BPs; 144–586 nm) on cucumbers (Cucumis sativus L.) cultivated in sandy-clay-loam field soil and compares these with the phytotoxic effects of readily soluble metal salts (Zn²⁺, Cu²⁺, and Al³⁺). Data revealed the cell-to-cell translocations of NPs, their attachments to outer and inner cell surfaces, nuclear membranes, and vacuoles, and their upward movements to aerial parts. Metal bioaccumulations in cucumbers were found in the order: (i) ZnO-NPs > ZnO-BPs > Zn²⁺, (ii) CuO-NPs > CuO-BPs > Cu²⁺, (iii) Al³⁺> Al₂O₃-NPs > Al₂O₃-BPs and (iv) TiO₂-NPs > TiO₂-BPs. Aging of NPs in soil for 45 days significantly enhanced metal uptake (P ≤ 0.05), for instance aged ZnO-NPs at 1 g kg⁻¹ increased the uptake by 20.7 % over non-aged ZnO-NPs. Metal uptakes inhibited root (RDW) and shoot (SDW) dry weight accumulations. For Cu species, maximum negative impact (%) was exhibited by Cu²⁺ (RDW:SDW = 94:65) followed by CuO-NPs (RDW:SDW = 78:34) and CuO-BPs (RDW:SDW = 27:22). Aging of NPs/BPs at 1–4 g kg⁻¹ further enhanced the toxic impact of tested materials on biomass accumulations and chlorophyll formation. NPs also induced membrane damage of root tissues and enhanced levels of antioxidant enzymes. The results of this study suggest that care is required when aged metal-oxide NPs of both essential (Zn and Cu) and non-essential (Al and Ti) metals interact with cucumber plants, especially, when they are used for agricultural purposes.
Показать больше [+] Меньше [-]Phenols in soils and agricultural products irrigated with reclaimed water
2021
Li, Yan | Liu, Honglu | Zhang, Lei | Lou, Chunhua | Wang, Yitong
The presence of phenols, such as nonylphenol (NP), bisphenol (BPA), and octylphenol (OP), in the environment have been receiving increased attention due to their potential risks to human health and environment. The use of reclaimed water for irrigation may be one of the sources of these phenols in the agricultural system. A field experiment was conducted to assess the effects of reclaimed water irrigation on phenol contamination of agricultural topsoil and products in the North China Plain between 2015 and 2016. Three irrigation treatments were applied to all crops: reclaimed water irrigation, groundwater irrigation and alternative irrigation with reclaimed water and groundwater (1:1, v/v). The results showed that the concentrations of NP, BPA, and OP in the topsoil were 0.02–0.54, 0.004–0.06, and ND–9.9 × 10⁻³ mg/kg, respectively; the corresponding values in agricultural products were 0.007–0.70, 0.004–0.24, and ND–1.08 mg/kg, respectively. The concentration of NP in the topsoil and agricultural products and that of BPA in the agricultural products were all less than the recommended limits. The yields of wheat, maize, vegetables were 4.35–7.08, 1.03–6.46, and 10.9–67.0 t/ha, respectively. The bioaccumulation factors (BCFs) of OP, NP, and BPA for cereals were 0.7–4.77, 0.16–4.59, and 1.3–23.9, respectively; the corresponding values in vegetables were 0.0–4.53 (except cucumber and eggplant), 0.38–12.6, and 0.57–24.3, respectively. No significant differences in phenol concentrations, BCFs, or yields of wheat and vegetables were observed among the three irrigation treatments. In conclusion, compared with groundwater irrigation, reclaimed water irrigation in this experiment did not significantly affect phenol concentrations in the topsoil and agricultural products as well as BCFs and yields of wheat and vegetables. However, because the quality of reclaimed water may vary across collected areas, additional experiments are warranted to analyze the effects of reclaimed water irrigation on the risk of phenol contamination.
Показать больше [+] Меньше [-]The distributions of three fungicides in vegetables and their potential health risks in Zhejiang, China: A 3-year study (2015–2017)
2020
Lin, Shu | Tang, Tao | Cang, Tao | Yu, Shuqing | Ying, Zeteng | Gu, Sijia | Zhang, Quan
Fungicides have been extensively used around the world in agriculture due to their effectiveness of sterilization. Recent evidences have shown that fungicides would exert a negative effect on gut microbiota and result in gut microbiota dysbiosis and metabolism disorder on non-target organisms and even humans. However, research on residues and potential health risks of fungicides in daily consumed vegetables has received less attention compared to insecticides. In this study, we studied three widely applied fungicides, procymidone, dimethomorph, and azoxystrobin, in China. We collected 551 samples of 10 different vegetables in 11 cities from Zhejiang province during 2015–2017. Three fungicides were analyzed by liquid chromatography-tandem mass spectrometry (LC-MS/MS). The average apparent recoveries of three fungicides ranged from 84.2% to 110% with the relative standard deviations lower than 10%. The LOD values of procymidone, dimethomorph, and azoxystrobin was 2, 0.09, and 1 μg/kg, respectively. The levels of procymidone, dimethomorph, and azoxystrobin in those vegetables ranged from ND-875, ND-238, and ND-76 μg/kg, respectively. The highest mean concentrations of procymidone, dimethomorph, and azoxystrobin were found in eggplant (68 μg/kg), spinach (16.4 μg/kg), and kidney bean (4 μg/kg), respectively. Tomato (62.6% of samples), eggplant (44.3% of samples), and cucumber (41.6% of samples) were most frequently detected with fungicides. Solanaceous fruit vegetables have the highest detection rate than other vegetables, and fungicides were most frequently detected in winter. The mean concentrations of three fungicides in different vegetables were all below the maximum residue limits for the national food safety standards of China, and the health risks resulting from consuming those vegetables in adults and children were all within the safe ranges. The data provided here clarify the distributions of fungicides in commonly consumed vegetables and their potential health risks.
Показать больше [+] Меньше [-]Dechlorane plus in greenhouse and conventional vegetables: Uptake, translocation, dissipation and human dietary exposure
2019
Sun, Jianqiang | Wu, Yihua | Tao, Ninger | Lv, Li | Yu, Xiaoyan | Zhang, Anping | Qi, Hong
In an attempt to evaluate the behavior of Dechlorane plus (DP) in soil-vegetable systems, this work investigated the uptake and translocation of DP by vegetables and the dissipation of DP in soil under greenhouse and conventional conditions. To address human dietary exposure to DP, estimated dietary intake via vegetable consumption was calculated. The uptake potential indexes of DP from soil into root for tomato and cucumber cultivated under different conditions ranged from 0.089 to 0.71. The ranges of uptake potential indexes of DP from resuspended soil particles into stem, leaf and fruit were 0.68–0.78, 0.27–0.42 and 0.39–0.75, respectively. The uptake potential indexes in greenhouse vegetables were generally higher than those in conventional vegetables when the vegetables had been planted in contaminated soil, indicating that greenhouse enhanced the uptake of DP with a high soil concentration by vegetables. The translocation factor (TF) values of DP in vegetables were in the range of 0.022–0.17, indicating that DP can be transported from root to fruit even though it has a high octanol water partition coefficient (KOW). The half-lives of DP dissipation in soil ranged from 70 to 102 days. The dissipation of DP in greenhouse soil was slightly slower than that in conventional soil. Higher estimated dietary intake (EDI) values of DP via greenhouse vegetables were observed due to the higher concentration of DP in greenhouse vegetables than conventional vegetables. These results suggested that greenhouses should not be adopted for vegetable production in contaminated regions.
Показать больше [+] Меньше [-]Effects of six selected antibiotics on plant growth and soil microbial and enzymatic activities
2009
Liu, Feng | Ying, Guang-Guo | Tao, Ran | Zhao, Jian-Liang | Yang, Ji-Feng | Zhao, Lan-Feng
The potential impact of six antibiotics (chlortetracycline, tetracycline and tylosin; sulfamethoxazole, sulfamethazine and trimethoprim) on plant growth and soil quality was studied by using seed germination test on filter paper and plant growth test in soil, soil respiration and phosphatase activity tests. The phytotoxic effects varied between the antibiotics and between plant species (sweet oat, rice and cucumber). Rice was most sensitive to sulfamethoxazole with the EC10 value of 0.1 mg/L. The antibiotics tested inhibited soil phosphatase activity during the 22 days' incubation. Significant effects on soil respiration were found for the two sulfonamides (sulfamethoxazole and sulfamethazine) and trimethoprim, whereas little effects were observed for the two tetracyclines and tylosin. The effective concentrations (EC10 values) for soil respiration in the first 2 days were 7 mg/kg for sulfamethoxazole, 13 mg/kg for sulfamethazine and 20 mg/kg for trimethoprim. Antibiotic residues in manure and soils may affect soil microbial and enzyme activities. Terrestrial ecotoxicological effects of antibiotics are related to their sorption and degradation behavior in soil.
Показать больше [+] Меньше [-]A novel and green sulfur fertilizer from CS2 to promote reproductive growth of plants
2020
Yue, Xiaoqing | Wang, Haozhe | Kong, Jing | Li, Bin | Yang, Jinrong | Li, Qiang | Zhang, Jianbin
Carbon disulfide (CS₂) is seen an odor-toxic organic sulfur compound, which presents a major impact on global climate change. Therefore, the conversion of CS₂ into valuable chemicals is the key to reduce the concentration of CS₂ in the atmosphere. On the basis of a CS₂ fixation strategy, CS₂-storage materials (CS₂SMs) are firstly synthesized by the reaction of CS₂ with a binary ion-like liquid systems of ethylenediamine (EDA) and ethylene glycol derivatives (EGs) under mild condition. In view of the serious shortage of sulfur fertilizer and its important position in global agricultural production, it is a promising choice to use the CS₂SMs as a new type of green sulfur fertilizer to promote the growth of eggplant, tomato, sweet pepper and cucumber. In this work, the influence of CS₂SMs on the growth of plants were studied by taking plants irrigated by using various aqueous CS₂SMs solutions as experimental groups, and those irrigated by using water and NH₄HCO₃ as control groups. The experimental results showed that all CS₂SMs could promote plant height, stem diameter, root weight, flower bud number and leaf size. Especially, several CS₂SMs presented significant influence on fluorescence and fruit number. Further studies showed that the CS₂SMs as new energy resources sulfur-containing boosted leaf area, improved root development, enhanced photosynthesis and soil nutrient uptake, and promoted vegetative and reproductive growth of these four types of plants. Thus, this work provided a new strategy for the use of CS₂ as an indirect energy source for the experimental four plants.
Показать больше [+] Меньше [-]Effect of low-dose, repeated exposure of contaminants of emerging concern on plant development and hormone homeostasis
2019
McGinnis, Michelle | Sun, Chengliang | Dudley, Stacia | Gan, Jay
Treated wastewater is increasingly used to meet agriculture's water needs; however, treated wastewater contains numerous contaminants of emerging concern (CECs). With exposure and uptake of CECs, phytotoxicity and health of crop plants is of concern, but is poorly understood. This study evaluated the effect of low-dose, chronic exposure to a mixture of 10 CECs, including 4 antibiotics, 3 anti-inflammatory drugs, 1 antiepileptic, 1 beta-blocker, and 1 antimicrobial, on lettuce (Lactuca sativa) and cucumber (Cucumis sativa L.) plants. The CEC mixture was added in nutrient media at 1 to 20X of their typical levels in treated wastewater effluents. Biological endpoints including germination, growth, phytohormone homeostasis, and CEC bioaccumulation were determined. Exposure to the CEC mixture did not affect the germination rate of lettuce seeds, but stimulated root elongation and increased the root-to-shoot biomass ratio during a 7 d cultivation. A dose-dependent decrease in biomass was observed in cucumber seedling after a 30 d exposure, with the highest rate CEC treatment resulting in decreases of 51.2 ± 20.9, 26.3 ± 34.1, and 33.2 ± 41.7% in the below-ground, above-ground, and total biomass, respectively. Levels of abscisic acid were significantly elevated (p < 0.05) in the leaves, but decreased (p < 0.05) in the roots. The dose-response of auxin was characterized by a hormesis effect. A significant 6-fold increase in the stem auxin level was observed at the 1X CEC rate, followed by a decrease to 2-fold the control at the 20X rate. Leaf auxin concentrations also significantly increased at the 1X CEC rate to 16-fold, followed by a decrease at the highest CEC rate. The results of this study suggeste that chronic exposure to low levels of CEC mixtures may compromise the fitness of plants, and the impairments are underlined by alterations in hormone balances.
Показать больше [+] Меньше [-]Pharmaceutical and personal care products-induced stress symptoms and detoxification mechanisms in cucumber plants
2018
Sun, Chengliang | Dudley, Stacia | Trumble, John | Gan, Jay
Contamination of agricultural soils by pharmaceutical and personal care products (PPCPs) resulting from the application of treated wastewater, biosolids and animal wastes constitutes a potential environmental risk in many countries. To date a handful of studies have considered the phytotoxicity of individual PPCPs in crop plants, however, little is known about the effect of PPCPs as mixtures at environmentally relevant levels. This study investigated the uptake and transport, physiological responses and detoxification of a mixture of 17 PPCPs in cucumber seedlings. All PPCPs were detected at higher concentrations in roots compared to leaves, with root activity inhibited in a dose-dependent manner. At 5–50 μg/L, the mature leaves exhibited burnt edges as well as a reduction in photosynthesis pigments. Reactive oxygen species (ROS) production and lipid peroxidation increased with increasing PPCP concentrations; and their contents were greater in roots than in leaves for all PPCP treatments. Enzymes involved in various functions, including oxidative stress (superoxide dismutase and ascorbate peroxidase) and xenobiotic metabolism (peroxidase and glutathione S-transferase), were elevated to different levels depending on the PPCP concentration. Glutathione content gradually increased in leaves, while a maxima occurred at 0.5 μg L⁻¹ PPCPs in roots, followed by a decrease thereafter. This study illustrated the complexity of phytotoxicity after exposure to PPCP mixtures, and provided insights into the molecular mechanisms likely responsible for the detoxification of PPCPs in higher plants.
Показать больше [+] Меньше [-]