Уточнить поиск
Результаты 1-10 из 64
Salinity mediated cross-tolerance of arsenic toxicity in the halophyte Salvadora persica L. through metabolomic dynamics and regulation of stomatal movement and photosynthesis Полный текст
2022
Patel, Monika | Parida, Asish Kumar
Arsenic (As) is a highly toxic metalloid adversely affecting the environment, human health, and crop productivity. The present study assessed the synergistic effects of salinity and As on photosynthetic attributes, stomatal regulations, and metabolomics responses of the xero-halophyte Salvadora persica to decipher the As-salinity cross-tolerance mechanisms and to identify the potential metabolites/metabolic pathways involved in cross-tolerance of As with salinity. Salinity and As stress-induced significant stomatal closure in S. persica suggests an adaptive response to decrease water loss through transpiration. NaCl supplementation improved the net photosynthetic rate (by +39%), stomatal conductance (by +190%), water use efficiency (by +55%), photochemical quenching (by +37%), and electron transfer rate (54%) under As stress as compared to solitary As treatment. Our results imply that both stomatal and non-stomatal factors account for a reduction in photosynthesis under high salinity and As stress conditions. A total of 64 metabolites were identified in S. persica under salinity and/or As stress, and up-regulation of various metabolites support early As-salinity stress tolerance in S. persica by improving antioxidative defense and ROS detoxification. The primary metabolites such as polyphenols (caffeic acid, catechin, gallic acid, coumaric acid, rosmarinic acid, and cinnamic acid), amino acids (glutamic acid, cysteine, glycine, lysine, phenylalanine, and tyrosine), citrate cycle intermediates (malic acid, oxalic acid, and α-ketoglutaric acid), and most of the phytohormones accumulated at higher levels under combined treatment of As + NaCl compared to solitary treatment of As. Moreover, exogenous salinity increased glutamate, glycine, and cysteine, which may induce higher synthesis of GSH-PCs in S. persica. The metabolic pathways that were significantly affected in response to salinity and/or As include inositol phosphate metabolism, citrate cycle, glyoxylate and dicarboxylate metabolism, amino acid metabolism, and glutathione metabolism. Our findings indicate that inflections of various metabolites and metabolic pathways facilitate S. persica to withstand and grow optimally even under high salinity and As conditions. Moreover, the addition of salt enhanced the arsenic tolerance proficiency of this halophyte.
Показать больше [+] Меньше [-]Detoxification of ionic liquids using glutathione, cysteine, and NADH: Toxicity evaluation by Tetrahymena pyriformis Полный текст
2021
Cui, Yin Hua | Shi, Qing Shan | Zhang, Dan Dan | Wang, Lingling | Feng, Jin | Chen, Yi-Wen | Xie, Xiao Bao
Ionic liquids (ILs), also known as green solvents, are widely acknowledged in several fields, such as chemical separation, synthesis, and electrochemistry, owing to their excellent physiochemical properties. However, their poor biodegradability may lead to environmental and health risks, posing a severe threat to humans, thus requiring further research. In this study, the biotoxicities of the imidazolium-based ILs were evaluated in Tetrahymena pyriformis. Moreover, IL detoxification was investigated by addition of glutathione (GSH), cysteine, and nicotinamide adenine dinucleotide (NADH). Reactive oxygen species (ROS) initiated by different IL types caused damage to Tetrahymena, while glutathione, cysteine, and NADH eliminated ROS, achieving the detoxification purposes. Detoxification results showed that NADH exhibited the best detoxification ability, followed by glutathione and cysteine. Finally, RT-PCR results suggested that metallothionein might have participated in IL detoxification.
Показать больше [+] Меньше [-]Influence of fuel oil on Platymonas helgolandica: An acute toxicity evaluation to amino acids Полный текст
2021
Li, Na | Liu, Yu | Liang, Zhengyu | Lou, Yadi | Liu, Yuxin | Zhao, Xinda | Wang, Guoguang
It is highly likely that the toxicity of water accommodated fractions (WAF) will influence marine microalgae, and consequently lead to potential risk for the marine ecological environment. However, it was often neglected whether WAF can influence the transformation of relative compounds in organisms. The metabolism of amino acids (AAs) can be used to track physiological changes in microalgae because amino acids are the basis of proteins and enzymes. In this study, using marine Chlorophyta Platymonas helgolandica as the test organism, the effects of different concentrations of WAF on AA compositions and stable carbon isotope ratios (δ¹³C) of individual AAs of Platymonas helgolandica were investigated. The results showed that the WAF of #180 fuel oil had an obvious suppressing effect on the growth and chlorophyll a content of microalgae. The growth inhibitory rate at 96 h was 80.66% at a WAF concentration of 0.50 mg L⁻¹ compared with the control. Furthermore, seven among the 16 AAs, including alanine, cysteine, proline, aspartic acid, lysine, histidine and tyrosine, had relatively high abundance. Under the glycolysis pathway, the cysteine abundance was higher than control, meaning that the biosynthesized pathway of alanine through cysteine as a precursor could be damaged. Phosphoenolpyruvate (PEP) was an important synthesis precursor of alanine (leucine) and aromatic AA family (Phenylalanine and tyrosine), and played an important role in δ¹³CAAₛ fractionation under the WAF stress. Under the TCA pathway, to protect cell metabolism activities under WAF stress, the δ¹³C value of threonine and proline abundance in microalgae with the increase in WAF stress. Therefore, δ¹³CAAₛ fractionation can be used as a novel method for toxicity evaluation of WAF on future.
Показать больше [+] Меньше [-]Application of the in vivo oxidative stress reporter Hmox1 as mechanistic biomarker of arsenic toxicity Полный текст
2021
Inesta-Vaquera, Francisco | Navasumrit, Panida | Henderson, Colin J. | Frangova, Tanya G. | Honda, Tadashi | Dinkova-Kostova, Albena T. | Ruchirawat, Mathuros | Wolf, C Roland
Inorganic arsenic (iAs) is a naturally occurring metalloid present in drinking water and polluted air exposing millions of people globally. Epidemiological studies have linked iAs exposure to the development of numerous diseases including cognitive impairment, cardiovascular failure and cancer. Despite intense research, an effective therapy for chronic arsenicosis has yet to be developed. Laboratory studies have been of great benefit in establishing the pathways involved in iAs toxicity and providing insights into its mechanism of action. However, the in vivo analysis of arsenic toxicity mechanisms has been difficult by the lack of reliable in vivo biomarkers of iAs’s effects. To address this issue we have applied the use of our recently developed stress reporter models to study iAs toxicity. The reporter mice Hmox1 (oxidative stress/inflammation; HOTT) and p21 (DNA damage) were exposed to iAs at acute and chronic, environmentally relevant, doses. We observed induction of the oxidative stress reporters in several cell types and tissues, which was largely dependent on the activation of transcription factor NRF2. We propose that our HOTT reporter model can be used as a surrogate biomarker of iAs-induced oxidative stress, and it constitutes a first-in-class platform to develop treatments aimed to counteract the role of oxidative stress in arsenicosis. Indeed, in a proof of concept experiment, the HOTT reporter mice were able to predict the therapeutic utility of the antioxidant N-acetyl cysteine in the prevention of iAs associated toxicity.
Показать больше [+] Меньше [-]Transformation of lamotrigine by white-rot fungus Pleurotus ostreatus Полный текст
2019
Chefetz, Benny | Marom, Rotem | Salton, Orit | Oliferovsky, Mariana | Mordehay, Vered | Ben-Ari, Julius | Hadar, Y. (Yitzhak)
One of the most persistent pharmaceutical compounds commonly found in treated wastewater is lamotrigine (LTG). It has also been detected in soils and crops irrigated with treated wastewater. Here we focused on the ability of the white-rot edible mushroom Pleurotus ostreatus to remove and transform LTG in liquid cultures. At concentrations of environmental relevance (1 and 10 μg L−1) LTG was almost completely removed from the culture medium within 20 days. To elucidate the mechanism of LTG removal and transformation, we applied a physiological-based approach using inhibitors and a competing agent. These experiments were conducted at a higher concentration for metabolites detection. Based on identification of sulfur-containing metabolites and LTG N2-oxide and the effect of specific inhibitors, cytochrome P450 oxidation is suggested as one of the reaction mechanisms leading to LTG transformation. The variety and number of transformation products (i.e., conjugates) found in the current study were larger than reported in mammals. Moreover, known conjugates with glucuronide, glutathione, or cysteine/glycine, were not found in our system. Since the majority of the identified transformation products were conjugates of LTG, this study highlights the persistence of LTG as an organic pollutant in ecosystems exposed to wastewater.
Показать больше [+] Меньше [-]Silver nanoparticle dissolution in the presence of ligands and of hydrogen peroxide Полный текст
2015
Sigg, Laura | Lindauer, Ursula
Dissolution of silver nanoparticles (AgNP with carbonate or citrate coating, total Ag 1–5 μM) was examined in the presence of the ligands cysteine, chloride and fulvic acids and of the oxidant hydrogen peroxide (H2O2) at low concentrations at pH 7.5. Dissolved Ag was separated from AgNP by ultrafiltration. Cysteine in the concentration range 0.2–5 μM resulted in an initial increase of dissolved Ag within few hours. Chloride (up to 0.1 mM) and fulvic acids (up to 15 mg L−1) had little effect on the dissolution of AgNP within hours to days. In contrast, very rapid dissolution within 1–2 h of both carbonate and citrate coated AgNP was observed in the presence of H2O2 in the concentration range 0.1–10 μM, under dark or light conditions. The high efficiency of H2O2 in dissolving AgNP is likely to be of importance in toxic effects of AgNP to algae, as H2O2 is produced and released into solution by algae.
Показать больше [+] Меньше [-]Sodium hydrosulfite together with silicon detoxifies arsenic toxicity in tomato plants by modulating the AsA-GSH cycle Полный текст
2022
Kaya, Cengiz | Ashraf, Muhammad
The main intent of the current research was to appraise if combined application of hydrogen sulfide (H₂S, 0.2 mM) and silicon (Si 2.0 mM) could improve tolerance of tomato plants to arsenic (As as sodium hydrogen arsenate heptahydrate, 0.2 mM) stress. Plant growth, chlorophylls (Chl), PSII maximum efficiency (Fv/Fm), H₂S concentration and L-cysteine desulfhydrase activity were found to be suppressed, but leaf and root As, leaf proline content, phytochelatins, malondialdehyde (MDA) and H₂O₂ as well as the activity of lipoxygenase (LOX) increased under As stress. H₂S and Si supplied together or alone enhanced the concentrations of key antioxidant biomolecules such as ascorbic acid, and reduced glutathione and the activities of key antioxidant system enzymes including catalase (CAT), superoxide dismutase (SOD), dehydroascorbate reductase (DHAR), glutathione reductase (GR), and glutathione S-transferase (GST). In comparison with individual application of H₂S or Si, the joint supplementation of both had better effect in improving growth and key biochemical processes, and reducing tissue As content, suggesting a putative collaborative role of both molecules in improving tolerance to As-toxicity in tomato plants.
Показать больше [+] Меньше [-]Metabolomics as a tool for in situ study of chronic metal exposure in estuarine invertebrates Полный текст
2022
Hillyer, Katie E. | Raes, Eric | Karsh, Kristen | Holmes, Bronwyn | Bissett, Andrew | Beale, David J.
Estuaries are subject to intense human use globally, with impacts from multiple stressors, such as metal contaminants. A key challenge is extending beyond traditional monitoring approaches to understand effects to biota and system function. To explore the metabolic effects of complex metal contaminants to sediment dwelling (benthic) fauna, we apply a multiple-lines-of-evidence approach, coupling environmental monitoring, benthic sampling, total metals analysis and targeted metabolomics.We characterise metabolic signatures of metal exposure in three benthic invertebrate taxa, which differed in distribution across sites and severity of metal exposure: sipunculid (very high), amphipod (high), maldanid polychaete (moderate). We observed sediment and tissue metal loads far exceeding sediment guidelines where toxicity-related adverse effects may be expected, for metals including, As, Cd, Pb, Zn and Hg.Change in site- and taxa-specific metabolite profiles was highly correlated with natural environmental drivers (sediment total organic carbon and water temperature). At the most metal influenced sites, metabolite variation was also correlated with sediment metal loads. Using supervised multivariate regression, taxa-specific metabolic signatures of increased exposure and possibility of toxic effects were characterised against multiple reference sites. Metabolic signatures varied according to each taxon and degree of metal exposure, but primarily indicated altered cysteine and methionine metabolism, metal-binding and elimination (lysosomal) activity, coupled to change in complex biosynthesis pathways, responses to oxidative stress, and cellular damage.This novel multiple-lines-of-evidence approach combining metabolomics with traditional environmental monitoring, enabled detection and characterisation of chronic metal exposure effects in situ in multiple invertebrate taxa. With capacity for application to rapid and effective monitoring of non-model species in complex environments, these approaches are critical for improved assessment and management of systems that are increasingly subject to anthropogenic drivers of change.
Показать больше [+] Меньше [-]Interplay between arsenic and selenium biomineralization in Shewanella sp. O23S Полный текст
2022
Staicu, Lucian C. | Wójtowicz, Paulina J. | Molnár, Zsombor | Ruiz-Agudo, Encarnación | Gallego, José Luis R. | Baragaño, Diego | Pósfai, Mihály
Bacteria play crucial roles in the biogeochemical cycle of arsenic (As) and selenium (Se) as these elements are metabolized via detoxification, energy generation (anaerobic respiration) and biosynthesis (e.g. selenocysteine) strategies. To date, arsenic and selenium biomineralization in bacteria were studied separately. In this study, the anaerobic metabolism of As and Se in Shewanella sp. O23S was investigated separately and mixed, with an emphasis put on the biomineralization products of this process. Multiple analytical techniques including ICP-MS, TEM-EDS, XRD, Micro-Raman, spectrophotometry and surface charge (zeta potential) were employed. Shewanella sp. O23S is capable of reducing selenate (SeO₄²⁻) and selenite (SeO₃²⁻) to red Se(-S)⁰, and arsenate (AsO₄³⁻) to arsenite (AsO₃³⁻). The release of H₂S from cysteine led to the precipitation of AsS minerals: nanorod AsS and granular As₂S₃. When As and Se oxyanions were mixed, both As–S and Se(-S)⁰ biominerals were synthesized. All biominerals were extracellular, amorphous and presented a negative surface charge (−24 to −38 mV). Kinetic analysis indicated the following reduction yields: SeO₃²⁻ (90%), AsO₄³⁻ (60%), and SeO₄²⁻ (<10%). The mix of SeO₃²⁻ with AsO₄³⁻ led to a decrease in As removal to 30%, while Se reduction yield was unaffected (88%). Interestingly, SeO₄²⁻ incubated with AsO₄³⁻ boosted the Se removal (71%). The exclusive extracellular formation of As and Se biominerals might indicate an extracellular respiratory process characteristic of various Shewanella species and strains. This is the first study documenting a complex interplay between As and Se oxyanions: selenite decreased arsenate reduction, whereas arsenate stimulated selenate reduction. Further investigation needs to clarify whether Shewanella sp. O23S employs multi-substrate respiratory enzymes or separate, high affinity enzymes for As and Se oxyanion respiration.
Показать больше [+] Меньше [-]Using tissue cysteine to predict the trophic transfer of methylmercury and selenium in lake food webs Полный текст
2022
Thera, Jennifer C. | Kidd, Karen A. | Stewart, A Robin | Bertolo, Robert F. | O'Driscoll, Nelson J.
The biomagnification of toxic methylmercury (MeHg) and selenium (Se) through aquatic food webs using nitrogen stable isotopes (δ¹⁵N) varies among ecosystems but underlying mechanisms are yet unexplained. Given the strong links between MeHg and thiol-containing amino acids and proteins containing selenocysteine, our hypothesis was that cysteine content is a better predictor of MeHg and Se transfer through lake food webs than δ¹⁵N. Food web samples were collected from six lakes in Kejimkujik National Park, Nova Scotia, Canada, and the regression slopes of log MeHg or Se versus protein-bound cysteine or bulk δ¹⁵N were compared. Across all six lakes, MeHg varied by a factor of 10 among taxa and was significantly and positively related to both cysteine (R² = 0.65–0.80, p < 0.001) and δ¹⁵N (R² = 0.88–0.94, p < 0.001), with no among-system differences in these slopes. In contrast, total Se concentrations varied by less than a factor of 2 among taxa in four lakes and were significantly related to cysteine in only two food webs (R² = 0.20 & 0.37, p = 0.014 & < 0.001); however, δ¹⁵N was not a predictor of Se in any lake (p = 0.052–0.777). Overall, these novel results indicate that cysteine content predicts MeHg, and sometimes Se, across trophic levels, providing a potential mechanism for among-system differences in their biomagnification.
Показать больше [+] Меньше [-]