Уточнить поиск
Результаты 1-10 из 65
The beta-receptor blocker metoprolol alters detoxification processes in the non-target organism Dreissena polymorpha Полный текст
2010
Contardo-Jara, Valeska | Pflugmacher, Stephan | Nutzmann, Gunnar | Kloas, Werner | Wiegand, Claudia | Department of Ecophysiology and Aquaculture ; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) | Ecohydrology, Leibniz Berlin ; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) | Department of Endocrinology ; Humboldt-Universität zu Berlin = Humboldt University of Berlin = Université Humboldt de Berlin (HU Berlin) | University of Southern Denmark (SDU) | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | Due to increasing amounts of pharmaceutically active compounds (PhACs) in the aquatic environment, their largely unknown effects to non-target organisms need to be assessed. This study examined physiological changes in the freshwater mussel Dreissena polymorpha exposed to increasing concentrations (0.534, 5.34, 53.4 and 534 mg L1) of the b-blocker metoprolol in a flow-through system for seven days.The two lower concentrations represent the environmentally relevant range. Surprisingly, metallothionein mRNA was immediately up-regulated in all treatments. For the two higher concentrations mRNA up-regulation in gills was found for P-glycoprotein after one day, and after four days for pi class glutathione S-transferase, demonstrating elimination and biotransformation processes, respectively. Additionally, catalase and superoxide dismutase were up-regulated in the digestive gland indicating oxidative stress. In all treated mussels a significant up-regulation of heat shock protein mRNA was observed in gills after four days, which suggests protein damage and the requirement for repair processes. Metoprolol was 20-fold bioaccumulated for environmentally relevant concentrations.
Показать больше [+] Меньше [-]The beta-receptor blocker metoprolol alters detoxification processes in the non-target organism Dreissena polymorpha Полный текст
2010
Contardo-Jara, Valeska | Pflugmacher, Stephan | Nutzmann, Gunnar | Kloas, Werner | Wiegand, Claudia
Due to increasing amounts of pharmaceutically active compounds (PhACs) in the aquatic environment, their largely unknown effects to non-target organisms need to be assessed. This study examined physiological changes in the freshwater mussel Dreissena polymorpha exposed to increasing concentrations (0.534, 5.34, 53.4 and 534 mg L1) of the b-blocker metoprolol in a flow-through system for seven days.The two lower concentrations represent the environmentally relevant range. Surprisingly, metallothionein mRNA was immediately up-regulated in all treatments. For the two higher concentrations mRNA up-regulation in gills was found for P-glycoprotein after one day, and after four days for pi class glutathione S-transferase, demonstrating elimination and biotransformation processes, respectively. Additionally, catalase and superoxide dismutase were up-regulated in the digestive gland indicating oxidative stress. In all treated mussels a significant up-regulation of heat shock protein mRNA was observed in gills after four days, which suggests protein damage and the requirement for repair processes. Metoprolol was 20-fold bioaccumulated for environmentally relevant concentrations. | International audience
Показать больше [+] Меньше [-]Molecular effects and bioaccumulation of levonorgestrel in the non-target organism Dreissena polymorpha Полный текст
2011
Contardo-Jara, Valeska | Lorenz, Claudia | Pflugmacher, Stephan | Nutzmann, Gunnar | Kloas, Werner | Wiegand, Claudia | Department of Ecophysiology and Aquaculture [Berlin] ; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) | Ecohydrology, Leibniz Berlin ; Leibniz Institute of Freshwater Ecology and Inland Fisheries (IGB) | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | University of Southern Denmark (SDU)
International audience | Bioaccumulation and effects of the contraceptive hormone levonorgestrel were examined in the nontarget organism Dreissena polymorpha. Molecular biomarkers of biotransformation, elimination, antioxidant defence and protein damage were analyzed after exposure to increasing concentrations of levonorgestrel in a flow-through system. The lowest concentration (0.312 mg L-1) was 100-fold bioconcentrated within four days. A decrease of the bioconcentration factor was observed within one week for the highest test concentrations (3.12 and 6.24 mg L-1) suggesting enhanced excretory processes. The immediate mRNA up-regulation of pi class glutathione S-transferase proved that phase II biotransformation processes were induced. Disturbance of fundamental cell functions was assumed since the aryl hydrocarbon receptor has been permanently down-regulated. mRNA up-regulation of P-glycoprotein, superoxide dismutase and metallothioneine suggested enhanced elimination processes and ongoing oxidative stress. mRNA up-regulation of heat shock protein 70 in mussels exposed to the two highest concentrations clearly indicated impacts on protein damage.
Показать больше [+] Меньше [-]Accumulation of free and covalently bound microcystins in tissues of Lymnaea stagnalis (Gastropoda) following toxic cyanobacteria or dissolved microcystin-LR exposure. Полный текст
2010
Lance, Emilie | Neffling, Milla Riina | Gerard, Claudia | Meriluoto, Jussi | Bormans, Myriam | Ecosystèmes, biodiversité, évolution [Rennes] (ECOBIO) ; Université de Rennes (UR)-Institut Ecologie et Environnement - CNRS Ecologie et Environnement (INEE-CNRS) ; Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS)-Observatoire des sciences de l'environnement de Rennes (OSERen) ; Université de Rennes (UR)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Rennes 2 (UR2)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Åbo Academy University | Ministere des Affaires Etrangeres francais et finois
International audience | Accumulation of free microcystins (MCs) in freshwater gastropods has been demonstrated but accumulation of MCs covalently bound to tissues has never been considered so far. Here, we follow the accumulation of total (free and bound) MCs in Lymnaea stagnalis exposed to i) dissolved MC-LR (33 and 100 μg L−1) and ii) Planktothrix agardhii suspensions producing 5 and 33 μg MC-LR equivalents L−1 over a 5-week period, and after a 3-week depuration period. Snails exposed to dissolved MC-LR accumulated up to 0.26 μg total MCs g−1 dry weight (DW), with no detection of bound MCs. Snails exposed to MCs producing P. agardhii accumulated up to 69.9 μg total MCs g−1 DW, of which from 17.7 to 66.7% were bound. After depuration, up to 15.3 μg g−1 DW of bound MCs were detected in snails previously exposed to toxic cyanobacteria, representing a potential source of MCs transfer through the food web. The study concerns accumulation and elimination of both free and bound microcystins (MCs) in tissues of a gastropod exposed to MCs producing cyanobacteria or dissolved MC-LR.
Показать больше [+] Меньше [-][Monitoring the decontamination degree of the slurry using the alternative aerobic and anaerobic fermentations]
2001
Tibru, I. | Nichita, I. | Savescu, E. | Mircov, V.D. (Facultatea de Medicina Veterinara, Timisoara (Romania))
This paper presents the results obtained after an alternative treatment (aerobic and anaerobic) of the animal slurry. We discussed only about the problems related to the effects of denitrification and dephosphatation on coliform bacteria. We noticed a good decontamination of the slurry using alternatively the two procedures. To determine the decontamination degree we used the classical multiple tubes method. The same samples were examined through the field microbiological test (FMT) adding Kovacs reagent. There is a concordance between the coliform bacteria determined through the classical method and the number determined through FMT to which the Kovacs reagent adding increases the sensitivity degree.
Показать больше [+] Меньше [-]Attenuation mechanisms of arsenic induced toxicity and its accumulation in plants by engineered nanoparticles: A review Полный текст
2022
Ulhassan, Zaid | Bhat, Javaid Akhter | Zhou, Weijun | Senan, Ahmed M. | Alam, Pravej | Ahmad, Parvaiz
The excessive arsenic (As) accumulation in plant tissues enforced toxic impacts on growth indices. So, the utilization of As-contaminated food leads to risks associated with human health. For the reduction of As concentrations in foods, it is obligatory to fully apprehend the take up, accretion, transportation and toxicity mechanisms of As within plant parts. This metalloid impairs the plant functions by disturbing the metabolic pathways at physio-biochemical, cellular and molecular levels. Though several approaches were utilized to reduce the As-accumulation and toxicity in soil-plant systems. Recently, engineered nanoparticles (ENPs) such a zinc oxide (ZnO), silicon dioxide or silica (SiO₂), iron oxide (FeO) and copper oxide (CuO) have emerged new technology to reduce the As-accumulation or phytotoxicity. But, the mechanistic approaches with systematic explanation are missing. By knowing these facts, our prime focus was to disclose the mechanisms behind the As toxicity and its mitigation by ENPs in higher plants. ENPs relives As toxicity and its oxidative damages by regulating the transporter or defense genes, modifying the cell wall composition, stimulating the antioxidants defense, phytochelatins biosynthesis, nutrients uptake, regulating the metabolic processes, growth improvement, and thus reduction in As-accumulation or toxicity. Yet, As-detoxification by ENPs depends upon the type and dose of ENPs or As, exposure method, plant species and experimental conditions. We have discussed the recent advances and highlight the knowledge or research gaps in earlier studies along with recommendations. This review may help scientific community to develop strategies such as applications of nano-based fertilizers to limit the As-accumulation and toxicity, thus healthy food production. These outcomes may govern sustainable application of ENPs in agriculture.
Показать больше [+] Меньше [-]Multigenerational exposure of the collembolan Folsomia candida to soil metals: Adaption to metal stress in soils polluted over the long term Полный текст
2022
Zhang, Yabing | Li, Zhu | Ke, Xin | Wu, Longhua | Christie, Peter
Multigenerational tests provide a comprehensive assessment of the long-term toxicity of pollutants. Here, the multigenerational effects of soil metal contamination on Folsomia candida were investigated over five generations (generations 1–5: F1–F5). Nine soils with varying physicochemical properties and degrees of metal pollution were studied. The selected endpoints were survival, reproduction, body size and body metal concentrations. F. candida was cultured only up to the fifth generation with high reproduction in contaminated acid soils where reproduction was at least 5 times that in neutral soils and 20 times that in calcareous soils. Correlation analysis indicated that soil pH (68.9% contribution) and cation exchange capacity (CEC, 15.4% contribution) were more important factors than pollution level affecting the reproduction of F. candida. No significant difference was observed in adult survival or adult length over five generations. The highest collembolan body Cd concentrations in soils A1-A3 were 3.15, 2.93 and 3.23 times those in F1, with similar results for body Pb. A similar trend in reproduction and juvenile length was observed with an initial decrease (p < 0.05) and then an increase (p < 0.05) over the generations in each acid soil; the opposite trend occurred in the changes in body cadmium (Cd) and lead (Pb) concentrations which increased initially (p < 0.05) and then decreased (p < 0.05) compared to the original concentrations of the first generation. The results indicate that F. candida can adapt to soil metal stress during multigenerational exposure and the adaption energy may be related to a tradeoff between reproduction or growth of juveniles and the detoxification of metals accumulated in the body. Soil properties, especially pH and CEC, had a substantial influence on the long-term survival of the collembolan in the metal-polluted soils.
Показать больше [+] Меньше [-]Biochemical toxicity and transcriptome aberration induced by dinotefuran in Bombyx mori Полный текст
2022
Xu, Shiliang | Hao, Zhihua | Li, Yinghui | Zhou, Yanyan | Shao, Ruixi | Chen, Rui | Zheng, Meidan | Xu, Yusong | Wang, Huabing
Dinotefuran is a third-generation neonicotinoid pesticide and is increasingly used in agricultural production, which has adverse effects on nontarget organisms. However, the research on the impact of dinotefuran on nontarget organisms is still limited. Here the toxic effects of dinotefuran on an important economic species and a model lepidopteran insect, Bombyx mori, were investigated. Exposure to different doses of dinotefuran caused physiological disorders or death. Cytochrome P450, glutathione S-transferase, carboxylesterase, and UDP glycosyl-transferase activities were induced in the fat body at early stages after dinotefuran exposure. By contrast, only glutathione S-transferase activity was increased in the midgut. To overcome the lack of sensitivity of the biological assays at the individual organism level, RNA sequencing was performed to measure differential expressions of mRNA from silkworm larvae after dinotefuran exposure. Differential gene expression profiling revealed that various detoxification enzyme genes were significantly increased after dinotefuran exposure, which was consistent with the upregulation of the detoxifying enzyme. The global transcriptional pattern showed that the physiological responses induced by dinotefuran toxicity involved multiple cellular processes, including energy metabolism, oxidative stress, detoxification, and other fundamental physiological processes. Many metabolism processes, such as carbon metabolism, fatty acid biosynthesis, pyruvate metabolism, and the citrate cycle, were partially repressed in the midgut or fat body. Furthermore, dinotefuran significantly activated the MAPK/CREB, CncC/Keap1, PI3K/Akt, and Toll/IMD pathways. The links between physiological, biochemical toxicity and comparative transcriptomic analysis facilitated the systematic understanding of the integrated biological toxicity of dinotefuran. This study provides a holistic view of the toxicity and detoxification metabolism of dinotefuran in silkworm and other organisms.
Показать больше [+] Меньше [-]Arsenic behavior in soil-plant system and its detoxification mechanisms in plants: A review Полный текст
2021
Khan, Imran | Awan, Samrah Afzal | Rizwan, Muhammad | Ali, Shafaqat | Zhang, Xinquan | Huang, Linkai
Arsenic (As) is one of the most toxic and cancer-causing metals which is generally entered the food chain via intake of As contaminated water or food and harmed the life of living things especially human beings. Therefore, the reduction of As content in the food could be of great importance for healthy life. To reduce As contamination in the soil and food, the evaluation of plant-based As uptake and transportation mechanisms is critically needed. Different soil factors such as physical and chemical properties of soil, soil pH, As speciation, microbial abundance, soil phosphates, mineral nutrients, iron plaques and roots exudates effectively regulate the uptake and accumulation of As in different parts of plants. The detoxification mechanisms of As in plants depend upon aquaporins, membrane channels and different transporters that actively control the influx and efflux of As inside and outside of plant cells, respectively. The xylem loading is responsible for long-distance translocation of As and phloem loading involves in the partitioning of As into the grains. However, As detoxification mechanism based on the clear understandings of how As uptake, accumulations and translocation occur inside the plants and which factors participate to regulate these processes. Thus, in this review we emphasized the different soil factors and plant cell transporters that are critically responsible for As uptake, accumulation, translocation to different organs of plants to clearly understand the toxicity reasons in plants. This study could be helpful for further research to develop such strategies that may restrict As entry into plant cells and lead to high crop yield and safe food production.
Показать больше [+] Меньше [-]The role of Nrf2 in mitigating cadmium-induced oxidative stress of Marsupenaeus japonicus Полный текст
2021
Ren, Xianyun | Xu, Yao | Yu, Zhenxing | Mu, Cuimin | Liu, Ping | Li, Jian
Nuclear factor-erythroid 2-related factor-2 (Nrf2) is an important modulator of cellular responses against Cd in mammalian cells. However, whether such modulation is conserved in Marsupenaeus japonicas remains unknown.In our study, the shrimps were injected with dsRNA targeting Nrf2 at 4 μg g⁻¹ body weight (b.w.) or sulforaphane (SFN) at 5 μg g⁻¹ b.w., and then were exposed to 40 mg L⁻¹ CdCl₂ for 48 h. After Nrf2 knockdown, the Cd content increased, but decreased in the SFN group. This suggested that Nrf2 could promote Cd excretion. A terminal deoxynulceotidyl transferase nick-end-labeling (TUNEL) assay revealed that the Nrf2 knockdown increased the number of apoptotic cells in M. japonicas, while SFN decreased the number of apoptotic cells. After Nrf2 knockdown, the total antioxidant capacity (T-AOC), superoxide dismutase (Sod) activity, and related gene expression decreased significantly, while the malondialdehyde (MDA) content increased remarkably. By contrast, SFN injection alleviated the oxidative stress, as evidenced by increased T-AOC, Sod activity, sod mRNA expression and a reduced MDA content. Similarly, detoxification related enzyme activities (ethoxyresorufin O-deethylase and glutathione-S-transferase (GST)) and their corresponding gene expressions (cyp3a (cytochrome P450 family 3 subfamily A) and gst) were suppressed in the ds-Nrf2 injection group, while they were elevated in the SFN group. In addition, ds-Nrf2 activated mitochondrial apoptotic pathway, as evidenced the mRNA and protein levels of caspase-3, Bcl2 associated X protein (Bax), and p53, while SFN treatment suppressed them. These results displayed that in M. japonicus Cd-induced cellular oxidative damage probably acts via the Nrf2 pathway.
Показать больше [+] Меньше [-]