Уточнить поиск
Результаты 1-10 из 445
Simultaneous removal of COD and NH4+-N from domestic sewage by a single-stage up-flow anaerobic biological filter based on Feammox
2022
Ma, Ding | Wang, Jin | Li, Hao | Che, Jian | Yue, Zhengbo
In recent years, Feammox has made it possible to remove NH₄⁺-N under anaerobic conditions; however, its application in practical wastewater treatment processes has not been extensively reported. In this study, an up-flow anaerobic biological filter based on limonite (Lim-UAF) was developed to facilitate long-term and stable treatment of domestic sewage. Lim-UAF achieved the highest removal efficiency of chemical oxygen demand (COD) and NH₄⁺-N at a hydraulic retention time (HRT) of 24 h (Stage II). Specifically, the COD and NH₄⁺-N content decreased from 240.8 and 30.0 mg/L to about 7.5 and 0.35 mg/L, respectively. To analyze the potential nitrogen removal mechanism, the Lim-UAF was divided into three layers according to the height of the reactor. The results showed that COD and NH₄⁺-N removal had remarkable characteristics in Lim-UAF. More than 55.0% of influent COD was removed in the lower layer (0–30 cm) of Lim-UAF, while 60.2% of NH₄⁺-N was removed in the middle layer (30–60 cm). Microbial community analysis showed that the community structure in the middle and upper layers (60–90 cm) was relatively similar, but quite different from that of the lower layer. Heterotrophic bacteria were dominant in the lower layer, whereas iron-reducing and iron-oxidizing bacteria were enriched in the upper and middle layers. The formation of secondary minerals (siderite and Fe(OH)₃) indicated that the Fe(III)/Fe(II) redox cycle occurred in Lim-UAF, which was triggered by the Feammox and NDFO processes. In summary, limonite was used to develop a single-stage wastewater treatment process for simultaneously removing organic matter and NH₄⁺-N, which has excellent application prospects in domestic sewage treatment.
Показать больше [+] Меньше [-]Polycyclic aromatic hydrocarbon removal from subsurface soil mediated by bacteria and archaea under methanogenic conditions: Performance and mechanisms
2022
Gou, Yaling | Song, Yun | Yang, Sucai | Yang, Yan | Cheng, Yanan | Li, Jiabin | Zhang, Tengfei | Cheng, Yanjun | Wang, Hongqi
In situ anoxic bioremediation is an easy-to-use technology to remediate polycyclic aromatic hydrocarbon (PAH)-contaminated soil. Degradation of PAHs mediated by soil bacteria and archaea using CO₂ as the electron acceptor is an important process for eliminating PAHs under methanogenic conditions; however, knowledge of the performance and mechanisms involved is poorly unveiled. In this study, the effectiveness and efficiency of NaHCO₃ (CO₂) as an electron acceptor to stimulate the degradation of PAHs by bacteria and archaea in highly contaminated soil were investigated. The results showed that CO₂ addition (EC2000) promoted PAH degradation compared to soil without added CO₂ (EC0), with 4.18%, 9.01%–8.05%, and 6.19%–12.45% increases for 2-, 3- and 4-ring PAHs after 250 days of incubation, respectively. Soil bacterial abundances increased with increasing incubation time, especially for EC2000 (2.90 × 10⁸ g⁻¹ soil higher than EC0, p < 0.05). Different succession patterns of the soil bacterial and archaeal communities during PAH degradation were observed. According to the PCoA and ANOSIM results, the soil bacterial communities were greatly (ANOSIM: R = 0.7232, P = 0.001) impacted by electron acceptors, whereas significant differences in the archaeal communities were not observed (ANOSIM: R = 0.553, P = 0.001). Soil bacterial and archaeal co-occurrence network analyses showed that positive correlations outnumbered the negative correlations throughout the incubation period for both treatments (e.g., EC0 and EC2000), suggesting the prevalence of coexistence/cooperation within and between these two domains rather than competition. The higher complexity, connectance, edge, and node numbers in EC2000 revealed stronger linkage and a more stable co-occurrence network compared to EC0. The results of this study could improve the knowledge on the removal of PAHs and the responses of soil bacteria and archaea to CO₂ application, as well as a scientific basis for the in situ anoxic bioremediation of PAH-contaminated industrial sites.
Показать больше [+] Меньше [-]Bioaccumulation of per- and polyfluoroalkyl substance in fish from an urban river: Occurrence, patterns and investigation of potential ecological drivers
2022
Macorps, Nicolas | Le Menach, Karyn | Pardon, Patrick | Guérin-Rechdaoui, Sabrina | Rocher, Vincent | Budzinski, Hélène | Labadie, Pierre
Per- and polyfluoroalkyl substances (PFAS) are ubiquitous in aquatic environments and a recent shift toward emerging PFAS is calling for new data on their occurrence and fate. In particular, understanding the determinants of their bioaccumulation is fundamental for risk assessment purposes. However, very few studies have addressed the combined influence of potential ecological drivers of PFAS bioaccumulation in fish such as age, sex or trophic ecology. Thus, this work aimed to fill these knowledge gaps by performing a field study in the Seine River basin (France). Composite sediment and fish (European chub, Squalius Cephalus) samples were collected from four sites along a longitudinal transect to investigate the occurrence of 36 PFAS. Sediment molecular patterns were dominated by fluorotelomer sulfonamidoalkyl betaines (i.e. 6:2 and 8:2 FTAB, 46% of ∑PFAS on average), highlighting the non-negligible contribution of PFAS of emerging concern. C₉–C₁₄ perfluoroalkyl carboxylic acids, perfluorooctane sulfonic acid (PFOS), perfluorooctane sulfonamide (FOSA) and 10:2 fluorotelomer sulfonate (10:2 FTSA) were detected in all fish samples. Conversely, 8:2 FTAB was detected in a few fish from the furthest downstream station only, suggesting the low bioaccessibility or the biotransformation of FTABs. ∑PFAS in fish was in the range 0.22–3.8 ng g⁻¹ wet weight (ww) and 11–140 ng g⁻¹ ww for muscle and liver, respectively. Fish collected upstream of Paris were significantly less contaminated than those collected downstream, pointing to urban and industrial inputs. The influence of trophic ecology and biometry on the interindividual variability of PFAS burden in fish was examined through analyses of covariance (ANCOVAs), with sampling site considered as a categorical variable. While the latter was highly significant, diet was also influential; carbon sources and trophic level (i.e. estimated using C and N stable isotope ratios, respectively) equally explained the variability of PFAS levels in fish.
Показать больше [+] Меньше [-]Seasonal pollutant levels in littoral high-Arctic amphipods in relation to food sources and terrestrial run-off
2022
Skogsberg, Emelie | McGovern, Maeve | Poste, Amanda | Jonsson, Sofi | Arts, Michael T. | Varpe, Øystein | Borgå, Katrine
Increasing terrestrial run-off from melting glaciers and thawing permafrost to Arctic coastal areas is expected to facilitate re-mobilization of stored legacy persistent organic pollutants (POPs) and mercury (Hg), potentially increasing exposure to these contaminants for coastal benthic organisms. We quantified chlorinated POPs and Hg concentrations, lipid content and multiple dietary markers, in a littoral deposit-feeding amphipod Gammarus setosus and sediments during the melting period from April to August in Adventelva river estuary in Svalbard, a Norwegian Arctic Aarchipelago. There was an overall decrease in concentrations of ∑POPs from April to August (from 58 ± 23 to 13 ± 4 ng/g lipid weight; lw), Hg (from 5.6 ± 0.7 to 4.1 ± 0.5 ng/g dry weight; dw) and Methyl Hg (MeHg) (from 5 ± 1 to 0.8 ± 0.7 ng/g dw) in G. setosus. However, we observed a seasonal peak in penta- and hexachlorobenzene (PeCB and HCB) in May (2.44 ± 0.3 and 23.6 ± 1.7 ng/g lw). Sediment concentrations of POPs and Hg (dw) only partly correlated with the contaminant concentrations in G. setosus. Dietary markers, including fatty acids and carbon and nitrogen stable isotopes, indicated a diet of settled phytoplankton in May–July and a broader range of carbon sources after the spring bloom. Phytoplankton utilization and chlorobenzene concentrations in G. setosus exhibited similar seasonal patterns, suggesting a dietary uptake of chlorobenzenes that is delivered to the aquatic environment during spring snowmelt. The seasonal decrease in contaminant concentrations in G. setosus could be related to seasonal changes in dietary contaminant exposure and amphipod ecology. Furthermore, this decrease implies that terrestrial run-off is not a significant source of re-mobilized Hg and legacy POPs to littoral amphipods in the Adventelva river estuary during the melt season.
Показать больше [+] Меньше [-]Ellagic acid ameliorates paraquat-induced liver injury associated with improved gut microbial profile
2022
Qi, Ming | Wang, Nan | Xiao, Yuxin | Deng, Yuankun | Zha, Andong | Tan, Bie | Wang, Jing | Yin, Yulong | Liao, Peng
Paraquat, a widely used herbicide, causes environmental pollution, and liver injury in humans and animals. As a natural compound in fruits, ellagic acid (EA) shows anti-inflammatory and antioxidant effects. This study examines the beneficial effects of dietary EA against the paraquat-induced hepatic injury and further explores the underlying molecular mechanisms using a piglet model. Post-weaning piglets are fed basal diet supplemented with 50 mg/kg, 100 mg/kg, or 200 mg/kg EA for 3 weeks. At week 2, hepatic injury is induced by 4 mg/kg paraquat followed by 7 days recovery. EA supplementation significantly mitigates paraquat-induced hepatic fibrosis, steatosis, and high apoptotic rate. In agreement, EA supplementation reduces serum pro-inflammatory levels, ameliorates inflammatory cells infiltration into hepatic tissue, which are associated with suppressed NF-κB signaling during paraquat exposure. In addition, EA supplementation significantly improves activities of antioxidative enzymes which were correlated with activated Nrf2/Keap 1 signaling during paraquat exposure. Furthermore, EA supplementation restores cecal microbial community during paraquat exposure. The protective effect of EA is strongly linked with increased relative abundance of Lactobacillus reuteri and Lactobacillus amylovorus. Taken together, EA supplementation effectively reduced the occurrence of hepatic oxidative damage and inflammation induced by paraquat through modulating cecal microbial communities, which provides a novel nutritional therapeutic strategy for hepatic injury.
Показать больше [+] Меньше [-]Understanding PFAAs exposure in a generalist seabird species breeding in the vicinity of a fluorochemical plant: Influence of maternal transfer and diet
2021
Lopez-Antia, Ana | Kavelaars, Marwa M. | Müller, Wendt | Bervoets, Lieven | Eens, Marcel
Perfluoroalkyl acids (PFAAs) are a focus of scientific and regulatory attention nowadays. However, PFAAs dynamics in the environment and the factors that determine wildlife exposure are still not well understood. In this study we examined PFAAs exposure in chicks of a generalist seabird species, the lesser black-backed gull (Larus fuscus), breeding 49 km away of a PFAAs hotspot (a fluorochemical plant in Antwerp, Belgium). In order to study the pathways of PFAAs exposure, we measured how chicks’ PFAAs burden varied with age, sex, and body condition. In addition, we related PFAA concentrations to chicks’ diet using stable isotope signatures. For this purpose, we studied plasma PFAA concentrations in 1-week and 4-week-old gull chicks. Only 4 (PFOS, PFOA, PFDA and PFNA) out of the 13 target PFAA compounds were detected. Measured concentrations of PFOS and PFOA were generally high compared to other seabird species but were highly variable between individuals. Furthermore, our results suggest that maternal transfer plays a significant role in determining chicks’ PFAAs burden, and that there are variable sources of exposure for PFOS and PFOA during post-hatching development. The association between PFOS and specific stable isotopes (i.e. δ¹⁵N and δ¹³C) suggests a higher exposure to PFOS in birds with a predominantly marine diet. We also found that males’ condition was positively associated with PFOS plasmatic concentration, probably due to the indirect effect of being fed a high quality (marine) diet which appears PFOS rich. Yet, exact exposure source(s) for PFOA remain(s) unclear. Given that PFOS concentrations measured in some chicks surpassed the toxicity reference value calculated for top avian predators, continued monitoring of exposure and health of this gull population, and other wildlife populations inhabiting the area, is highly recommended.
Показать больше [+] Меньше [-]Metal accumulation varies with life history, size, and development of larval amphibians
2021
Smalling, Kelly L. | Oja, Emily B. | Cleveland, Danielle M. | Davenport, Jon M. | Eagles-Smith, Collin | Campbell Grant, Evan H. | Kleeman, Patrick M. | Halstead, Brian J. | Stemp, Kenzi M. | Tornabene, Brian J. | Bunnell, Zachary J. | Hossack, Blake R.
Amphibian larvae are commonly used as indicators of aquatic ecosystem health because they are susceptible to contaminants. However, there is limited information on how species characteristics and trophic position influence contaminant loads in larval amphibians. Importantly, there remains a need to understand whether grazers (frogs and toads [anurans]) and predators (salamanders) provide comparable information on contaminant accumulation or if they are each indicative of unique environmental processes and risks. To better understand the role of trophic position in contaminant accumulation, we analyzed composite tissues for 10 metals from larvae of multiple co-occurring anuran and salamander species from 20 wetlands across the United States. We examined how metal concentrations varied with body size (anurans and salamanders) and developmental stage (anurans) and how the digestive tract (gut) influenced observed metal concentrations. Across all wetlands, metal concentrations were greater in anurans than salamanders for all metals tested except mercury (Hg), selenium (Se), and zinc (Zn). Concentrations of individual metals in anurans decreased with increasing weight and developmental stage. In salamanders, metal concentrations were less correlated with weight, indicating diet played a role in contaminant accumulation. Based on batches of similarly sized whole-body larvae compared to larvae with their digestive tracts removed, our results indicated that tissue type strongly affected perceived concentrations, especially for anurans (gut represented an estimated 46–97% of all metals except Se and Zn). This suggests the reliability of results based on whole-body sampling could be biased by metal, larval size, and development. Overall, our data shows that metal concentrations differs between anurans and salamanders, which suggests that metal accumulation is unique to feeding behavior and potentially trophic position. To truly characterize exposure risk in wetlands, species of different life histories, sizes and developmental stages should be included in biomonitoring efforts.
Показать больше [+] Меньше [-]Diet influences on growth and mercury concentrations of two salmonid species from lakes in the eastern Canadian Arctic
2021
Chételat, John | Shao, Yueting | Richardson, Murray C. | MacMillan, Gwyneth A. | Amyot, Marc | Drevnick, Paul E. | Gilla, Haradīpa | Köck, Günter | Muir, Derek C.G.
Diet, age, and growth rate influences on fish mercury concentrations were investigated for Arctic char (Salvelinus alpinus) and brook trout (Salvelinus fontinalis) in lakes of the eastern Canadian Arctic. We hypothesized that faster-growing fish have lower mercury concentrations because of growth dilution, a process whereby more efficient growth dilutes a fish’s mercury burden. Using datasets of 57 brook trout and 133 Arctic char, linear regression modelling showed fish age and diet indices were the dominant explanatory variables of muscle mercury concentrations for both species. Faster-growing fish (based on length-at-age) fed at a higher trophic position, and as a result, their mercury concentrations were not lower than slower-growing fish. Muscle RNA/DNA ratios were used as a physiological indicator of short-term growth rate (days to weeks). Slower growth of Arctic char, inferred from RNA/DNA ratios, was found in winter versus summer and in polar desert versus tundra lakes, but RNA/DNA ratio was (at best) a weak predictor of fish mercury concentration. Net effects of diet and age on mercury concentration were greater than any potential offset by biomass dilution in faster-growing fish. In these resource-poor Arctic lakes, faster growth was associated with feeding at a higher trophic position, likely due to greater caloric (and mercury) intake, rather than growth efficiency.
Показать больше [+] Меньше [-]Bacterial consumption by nematodes is disturbed by the presence of polystyrene beads: The roles of food dilution and pharyngeal pumping
2021
Rauchschwalbe, Marie-Theres | Fueser, Hendrik | Traunspurger, W. (Walter) | Höss, Sebastian
Microplastics (MPs; <5 mm) released into freshwaters from anthropogenic sources accumulate in sediments, where they may pose an environmental threat to benthic organisms, such as nematodes. Several studies have examined the effects of nano- and microplastics on the nematode Caenorhabditis elegans, whereas reduced food availability was suggested as a possible explanation for the observed inhibitory effects. Therefore, this study should clarify whether micro-beads of different sizes (1.0 and 6.0 μm in diameter) and materials (polystyrene PS, silica) are able to interfere with the feeding of C. elegans on its bacterial diet (Escherichia coli), and, by this, lowering its consumption rate within 7 h of exposure. Moreover, it was examined whether an inhibited bacterial consumption was caused by a reduction of the nematode’s pumping rate, as a primary indicator of food ingestion. Bacterial consumption by C. elegans was significantly decreased in the presence of 1.0- and 6.0-μm PS beads (49–67% lower bacterial consumption compared to control), whereas in the presence of 1.0-μm silica beads feeding was not impeded. Interestingly, the pumping rate was significantly lower in the presence of non-ingestible 6.0-μm PS beads with 161 ± 16 pumps min⁻¹, while it was largely unchanged for nematodes exposed to ingestible 1.0-μm PS beads with 205 ± 12 pumps min⁻¹, compared to control conditions with 210 ± 18 pumps min⁻¹, respectively. As reduced bacterial consumption leads to generally lower energy reserves in C. elegans, these results allow to link observed inhibitory effects of MPs on the nematodes to a lower food availability. Such indirect, food-web related, effects of MPs should raise concern of ecological consequences in natural habitats, where temporal food deficiencies can occur. Consequently, disturbances in food availability and feeding efficiency should be regarded as important parameters in environmental risk assessments focusing on MPs.
Показать больше [+] Меньше [-]Deposition, depletion, and potential bioaccumulation of bisphenol F in eggs of laying hens after consumption of contaminated feed
2021
Xiao, Zhiming | Wang, Ruiguo | Suo, Decheng | Wang, Shi | Li, Xiaomin | Dong, Shujun | Li, Tong | Su, Xiaoou
Increasing concerns over bisphenol A (BPA) as an endocrine disrupting chemical (EDC) and its adverse effects on both humans and animals have led to the substitution by structural analogs, such as bisphenol F (BPF), in many application areas. Information regarding to the carry-over of this emerging chemical in farm animals is essential for legislation and risk assessment purposes. In this study, a large-scale number of animal experiments were designed to investigate the transfer of BPF from feed to eggs. One control and three experimental groups of laying hens (72 hens per group) were fed with basal diets and BPF-contaminated feed at concentration levels of 0.1, 0.5 and 2.5 mg kg⁻¹, respectively, for two weeks. The hens were then fed with BPF-free diets for a further four weeks. Eggs were collected daily, and separated into egg yolk and white for BPF analysis. The effects of different levels of BPF exposure on laying performance followed a non-monotonic dose-response curve, since low level BPF (0.1 mg kg⁻¹) exposure did increase the laying rate, mean egg weight and daily feed intake, while high level BPF (2.5 mg kg⁻¹) exposure showed a decreasing trend. BPF residues were detected in both egg yolks and whole eggs after two days of administration, and plateau phase was achieved within 9–18 days. There are clear linear dose-response relationships between the plateau BPF concentrations in feed and eggs. The residue of BPF was found mainly in egg yolks with conjugated form and depleted slowly (still detected 21 days after feeding the BPF-free diet of the high level group). Mean carry-over rate of 0.59% BPF from feed to eggs was obtained. Compared with the carry-over rates of PCBs and dioxins, BPF showed a relatively minor trend of bioaccumulation in eggs. To the best of our knowledge, this is the first report on the deposition, depletion, and bioaccumulation study of bisphenols in farm animals. The quantity of data can therefore be helpful in the frame of risk assessment, especially for a comprehensive estimation of consumer exposure to the residues of bisphenols.
Показать больше [+] Меньше [-]