Уточнить поиск
Результаты 1-10 из 41
Pesticide residues in honey bees, pollen and beeswax: Assessing beehive exposure
2018
Calatayud-Vernich, Pau | Calatayud, Fernando | Simó, Enrique | Picó, Yolanda
In order to study the distribution of pesticide residues in beekeeping matrices, samples of live in-hive worker honey bees (Apis mellifera), fresh stored pollen and beeswax were collected during 2016–2017 from 45 apiaries located in different landscape contexts in Spain. A total of 133 samples were screened for 63 pesticides or their degradation products to estimate the pesticide exposure to honey bee health through the calculation of the hazard quotient (HQ). The influence of the surrounding environment on the content of pesticides in pollen was assessed by comparing the concentrations of pesticide residues found in apiaries from intensive farming landscapes to those found in apiaries located in mountainous, grassland and urban contexts. Beeswax revealed high levels of miticides used in beekeeping such as coumaphos, chlorfenvinphos, fluvalinate and acrinathrin, which were detected in more than 75% of samples. Pollen was predominantly contaminated by miticides but also by insecticides used in agriculture such as chlorpyrifos and acetamiprid, which showed concentrations significantly higher in apiaries located in intensive farming contexts. Pesticides residues were less frequent and at lower concentrations in live honey bees. Beeswax showed the highest average hazard scores (HQ > 5000) to honey bees. Pollen samples contained the largest number of pesticide residues and relevant hazard (HQ > 50) to bees. Acrinathrin was the most important contributor to the hazard quotient scores in wax and pollen samples. The contributions of the pesticides dimethoate and chlorpyrifos to HQ were considered relevant in samples.
Показать больше [+] Меньше [-]What is the most suitable native bee species from the Neotropical region to be proposed as model-organism for toxicity tests during the larval phase?
2020
Rosa-Fontana, Annelise | Dorigo, Adna Suelen | Galaschi-Teixeira, Juliana Stephanie | Nocelli, Roberta C.F. | Malaspina, Osmar
Currently, Brazil has a full framework for pesticide risk assessment established for Apis mellifera, based on the North American approach. However, the use of Apis mellifera as model-organism as a surrogate for Brazilian native species of stingless bees has been questioned. Assessments on other stages of development than adult individual are essential. Our study aimed to standardize in vitro larval rearing method for the stingless bee species Scaptotrigona postica and Tetragonisca angustula, comparing the results to those obtained for M. scutellaris (previously described), for proposing the most suitable one for using in toxicological larval tests. We used the most efficient method for determining the toxicity of dimethoate on S. postica larvae. We presented the first comparative approach of responses to in vitro larval rearing methods among native bee species from Neotropical region, for use in risk assessment. Our results showed that S. postica was the most suitable native species to be proposed as model-organism. In addition, our results are also very useful for a ring test to validate the method, in accordance to OECD.
Показать больше [+] Меньше [-]Composition and endocrine effects of water collected in the Kibale national park in Uganda
2019
Spirhanzlova, Petra | Fini, Jean-Baptiste | Demeneix, Barbara | Lardy-Fontan, Sophie | Vaslin-Reimann, Sophie | Lalere, Béatrice | Guma, Nelson | Tindall, Andrew | Krief, Sabrina
Pesticides are used worldwide with potential harmful effects on both fauna and flora. The Kibale National Park in Uganda, a site renowned for its biodiversity is surrounded by tea, banana and eucalyptus plantations as well as maize fields and small farms. We previously showed presence of pesticides with potential endocrine disruptive effects in the vicinity. To further investigate the water pollution linked to agricultural pressure in this protected area, we implemented a complementary monitoring strategy based on: analytical chemistry, effects based methods and the deployment of Polar Organic Chemical Integrative Samplers (POCIS). Chemical analysis of the POCIS extracts revealed the presence of 13 pesticides: carbofuran, DEET, 2.4-D amine, carbaryl, ametryn, isoproturon, metolachlor, terbutryn, dimethoate, imidacloprid, picaridin, thiamethoxam, carbendazim, with the first three being present in the largest quantities. Water samples collected at the POCIS sampling sites exhibited thyroid and estrogen axis disrupting activities in vivo, in addition to developmental and behaviour effects on Xenopus laevis tadpoles model. Based on our observations, for the health of local human and wildlife populations, further monitoring as well as actions to reduce agrochemical use should be considered in the Kibale National Park and in regions exposed to similar conditions.
Показать больше [+] Меньше [-]Genotoxic effects of starvation and dimethoate in haemocytes and midgut gland cells of wolf spider Xerolycosa nemoralis (Lycosidae)
2016
Wilczek, Grażyna | Mędrzak, Monika | Augustyniak, Maria | Wilczek, Piotr | Stalmach, Monika
The aim of this study was to assess the genotoxic effects of starvation and dimethoate (organophosphate insecticide) in female and male wolf spiders Xerolycosa nemoralis (Lycosidae) exposed to the stressors under laboratory conditions. DNA damage was measured in haemocytes and midgut gland cells using the comet assay. In response to the two stressing factors, both cell types showed %TDNA, tail length (TL) and OTM values higher in males than in females. Level of DNA damage in haemocytes was greater than in midgut gland cells. In both sexes, the strongest genotoxicity was recorded at single application of dimethoate. After five-time exposure to the pesticide, genotoxic effects of a single dose were sustained in males and reduced to the control level in females. Starvation stress was well tolerated by the females, in which neither cell type was affected by DNA damage. However, in male haemocytes food deprivation induced severe DNA damage, what suggests suppression of the defence potential at prolonged starvation periods.
Показать больше [+] Меньше [-]Short-term effects of dimethoate on metabolic responses in Chrysolina pardalina (Chrysomelidae) feeding on Berkheya coddii (Asteraceae), a hyper-accumulator of nickel
2007
Augustyniak, M. | Migula, P. | Mesjasz-Przybylowicz, J. | Tarnawska, M. | Nakonieczny, M. | Babczynska, A. | Przybylowicz, W. | Augustyniak, M.G.
Berkheya coddii Roessler (Asteraceae) is a hyper-accumulator of nickel, which can be used in phytomining and phytoremediation. Chrysolina pardalina Fabricius (Chrysomelidae) is a phytophagous leaf beetle, which may be useful in controlling population levels of B. coddii after it has been introduced into a new habitat. The aim of this study was to investigate the response of C. pardalina to topical application of dimethoate. Data recorded included the activity of acetylcholinesterase (AChE), the concentration of glutathione (GSH), and the activity of selected enzymes connected with GSH metabolism. Assays were carried out several times during the first 24 h after exposure to dimethoate. At the dosages used in this study, dimethoate was not as toxic as expected. AChE activity was significantly decreased 14 and 24 h after application. GST activity was significantly decreased 24 h after application. GSTPx activity was significantly decreased 2, 14 and 24 h after application. GR activity was significantly increased 4 h after application. GSH concentration was significantly increased 24 h after application. Long-term exposure to high levels of nickel may have caused adaptive changes in the enzymes that enable C. pardalina to deal with other stressors, including organophosphate pesticides. Long-term exposure to high levels of nickel may have caused adaptive changes in the enzymes that enable Chrysolina pardalina to deal with other stressors, including organophosphate pesticides.
Показать больше [+] Меньше [-]Combined lethal toxicities of pesticides with similar structures to Caenorhabditis elegans are not necessarily concentration additives
2021
Huang, Peng | Liu, Shu-Shen | Xu, Ya-Qian | Wang, Yu | Wang, Ze-Jun
Studies have shown that the mixture toxicity of compounds with similar modes of action (MOAs) is usually predicted by the concentration addition (CA) model. However, due to the lack of toxicological information on compounds, more evidence is needed to determine whether the above conclusion is generally applicable. In general, the same type of compounds with similar chemical structures have similar MOAs, so whether the toxicities of the mixture of these compounds are additive needs to be further studied. In this paper, three types of pesticides with similar chemical structures (three organophosphoruses, two carbamates and two neonicotinoids) that may have similar MOAs were selected and five binary mixture systems were constructed. For each system, five mixture rays with different concentration ratios were designed by the direct equipartition ray design (EquRay) method. The mortality of Caenorhabditis elegans was regarded as the endpoint for the toxicity exposure to single pesticides and binary mixtures. The combined toxicities were evaluated simultaneously using the CA model, isobologram and combination index. The structural similarity of the same type of pesticides was quantitatively analyzed according to the MACCS molecular fingerprint and the slope of dose-response curve at pEC₅₀. The results show that the toxicities of neonicotinoid mixtures and carbamate mixtures are almost antagonistic. The entire mixture system of dichlorvos and dimethoate produced synergism, and four of the five mixture rays of dimethoate and methamidophos induced antagonism, while among the mixture rays of dichlorvos and methamidophos, different concentrations showed different interaction types. The results of structural similarity analysis show that the size of structural similarity showed a certain quantitative relationship with the toxicity interaction of mixtures, that is, the structural similarity of the same type of pesticides may show an additive action in a certain range.
Показать больше [+] Меньше [-]Effects of three common pesticides on survival, food consumption and midgut bacterial communities of adult workers Apis cerana and Apis mellifera
2019
Yang, Yang | Ma, Shilong | Yan, Zhenxiong | Liu, Feng | Diao, Qingyun | Dai, Pingli
The acute and chronic toxicity of 3 common pesticides, namely, amitraz, chlorpyrifos and dimethoate, were tested in Apis mellifera and Apis cerana. Acute oral toxicity LC50 values were calculated after 24 h of exposure to contaminated syrup, and chronic toxicity was tested after 15 days of exposure to 2 sublethal concentrations of pesticides. The toxicity of the tested pesticides to A. mellifera and A. cerana decreased in the order of dimethoate > chlorpyrifos > amitraz. A. mellifera was slightly more sensitive to chlorpyrifos and dimethoate than A. cerana, while A. cerana was more sensitive to amitraz than A. mellifera. Chronic toxicity tests showed that 1.0 mg/L dimethoate reduced the survival of the two bee species and the food consumption of A. mellifera, while 1.0 mg/L amitraz and 1.0 mg/L chlorpyrifos did not affect the survival or food consumption of the two bee species. The treatment of syrup with amitraz at a concentration equal to 1/10th of the LC50 value did not affect the survival of or diet consumption by A. mellifera and A. cerana; however, chlorpyrifos and dimethoate at concentrations equal to 1/10th of their respective LC50 values affected the survival of A. cerana. Furthermore, intestinal bacterial communities were identified using high-throughput sequencing targeting the V3V4 regions of the 16S rDNA gene. All major honey bee intestinal bacterial phyla, including Proteobacteria (62.84%), Firmicutes (34.04%), and Bacteroidetes (2.02%), were detected. There was a significant difference in the microbiota species richness of the two species after 15 days; however, after 30 days, no significant differences were found in the species diversity and richness between A. cerana and A. mellifera exposed to 1.0 mg/L amitraz and 1.0 mg/L chlorpyrifos. Overall, our results confirm that acute toxicity values are valuable for evaluating the chronic toxicity of these pesticides to honey bees.
Показать больше [+] Меньше [-]Relationship between pesticide accumulation in transplanted zebra mussel (Dreissena polymorpha) and community structure of aquatic macroinvertebrates
2019
Bashnin, Tayebeh | Verhaert, Vera | De Jonge, Maarten | Vanhaecke, Lynn | Teuchies, Johannes | Bervoets, Lieven
This study examined to what degree bioaccumulated pesticides in transplanted zebra mussels can give an insight to pesticide bioavailability in the environment. In addition, it was investigated if pesticide body residues could be related to ecological responses (changes in macroinvertebrate community composition). For this at 17 locations, 14 pesticide concentrations and nine dissolved metals were measured in translocated zebra mussels and the results were related to the structure of the macroinvertebrate community. Critical body burdens in zebra mussel, above which the ecological status was always low, could be estimated for chlorpyrifos, terbuthylazine and dimethoate being respectively 8.0, 2.08 and 2.0 ng/g dry weight.With multivariate analysis, changes in the community structure of the macroinvertebrates were related to accumulated pesticides and dissolved metals. From this analysis, it was clear that the composition of the macroinvertebrate communities was not only affected by pesticides but also by metal pollution. Two different regions could be clearly separated, one dominated by metal pollution, and one where pesticide pollution was more important.The results of this study demonstrated that zebra mussel body burdens can be used to measure pesticide bioavailability and that pesticide body burdens might give insight in the ecological impacts of pesticide contamination. Given the interrelated impacts of pesticides and heavy metals, it is important to further validate all threshold values before they can be used by regulators.
Показать больше [+] Меньше [-]Pesticide monitoring and ecotoxicological risk assessment in surface water bodies and sediments of a tropical agro-ecosystem
2018
Carazo Rojas, Elizabeth | Pérez-Rojas, Greivin | Pérez-Villanueva, Marta | Chinchilla-Soto, Cristina | Chin-Pampillo, Juan Salvador | Aguilar-Mora, Paula | Alpízar-Marín, Melvin | Masís-Mora, Mario | Rodríguez-Rodríguez, Carlos E. | Vryzas, Zisis
A pesticide monitoring study including 80 and 60 active ingredients (in surface waters and sediments, respectively) was carried out in a river basin in Costa Rica during 2007–2012. A special emphasis was given on the exceptional ecological conditions of the tropical agro-ecosystem and the pesticide application strategies in order to establish a reliable monitoring network. A total of 135 water samples and 129 sediment samples were collected and analyzed. Long-term aquatic ecotoxicological risk assessment based on risk quotient in three trophic levels was conducted. Short-term risk assessment was used to calculate the toxic unit and prioritization of sampling sites was conducted by the sum of toxic units in both aquatic and sediment compartments. Dimethoate (61.2 μg/L), propanil (30.6 μg/L), diuron (22.8 μg/L) and terbutryn (4.8 μg/L) were detected at the highest concentrations in water samples. Carbendazim and endosulfan were the most frequently detected pesticides in water and sediment samples, respectively. Triazophos (491 μg/kg), cypermethrin (71.5 μg/kg), permethrin (47.8 μg/kg), terbutryn (38.7 μg/kg), chlorpyrifos (18.2 μg/kg) and diuron (11.75 μg/kg) were detected at the highest concentrations in sediment samples. The pesticides carbendazim, diuron, endosulfan, epoxyconazole, propanil, triazophos and terbutryn showed non-acceptable risk even when a conservative scenario was considered. Sum TUsite higher than 1 was found for one and two sampling sites in water and sediment compartments, respectively, suggesting high acute toxicity for the ecosystem.Exceptional ecological conditions of the tropical agro-ecosystem affect the fate of pesticides in water and sediment environment differently than the temperate one.
Показать больше [+] Меньше [-]The level of DNA damage in adult grasshoppers Chorthippus biguttulus (Orthoptera, Acrididae) following dimethoate exposure is dependent on the insects’ habitat
2016
Karpeta-Kaczmarek, Julia | Kubok, Magdalena | Dziewięcka, Marta | Sawczyn, Tomasz | Augustyniak, Maria
The comet assay was used to study the DNA damage that was induced by dimethoate in the hemocyte cells of adult Chorthippus biguttulus grasshoppers (Insecta: Orthoptera) that originated from two sites with varying levels of pollution. The primary focus of the study was to examine whether continuous exposure to environmental stress can modify the effect of pesticides on genome stability. After three days of acclimation to laboratory conditions, the level of DNA damage in the hemocytes of Bow-winged grasshoppers was within a similar range in the insects from both areas. However, the level of DNA damage following dimethoate treatment was significantly higher in the insects from the reference area (Pogoria) than in the individuals from the heavily polluted location (Szopienice). Four hours after pesticide treatment, the Tail DNA (TDNA) in the hemocytes of the male and female specimens from Pogoria was as high as 75% and 50% respectively, whereas the values in males and females from Szopienice only reached 30% and 20%, respectively. A rapid decrease in DNA damage was observed in both populations 24 h after the pesticide application. The habitat of an insect (site), the administration of the dimethoate (treatment), and the period following the application of the pesticide (time), all significantly influenced the levels of DNA damage. No interactions related to TDNA were observed between the variables ‘sex’ and ‘treatment’. Similarly, the variable ‘sex’, when analyzed alongside ‘treatment’ and ‘site’ (the area from which the insects were collected), or ‘treatment’ and ‘time’ had no influence on TL. Exposure to dimethoate undoubtedly contributed to the formation of DNA damage in the hemocytes of adult C. biguttulus. However, the level of damage was clearly dependent on the place where the insects were captured.
Показать больше [+] Меньше [-]