Уточнить поиск
Результаты 1-10 из 35
Geostationary satellite-derived ground-level particulate matter concentrations using real-time machine learning in Northeast Asia
2022
Park, Seohui | Im, Jungho | Kim, Jhoon | Kim, Sang-min
Rapid economic growth, industrialization, and urbanization have caused frequent air pollution events in East Asia over the last few decades. Recently, aerosol data from geostationary satellite sensors have been used to monitor ground-level particulate matter (PM) concentrations hourly. However, many studies have focused on using historical datasets to develop PM estimation models, often decreasing their predictability for unseen data in new days. To mitigate this problem, this study proposes a novel real-time learning (RTL) approach to estimate PM with aerodynamic diameters of <10 μm (PM₁₀) and <2.5 μm (PM₂.₅) using hourly aerosol data from the Geostationary Ocean Color Imager (GOCI) and numerical model outputs for daytime conditions over Northeast Asia. Three schemes with different weighting strategies were evaluated using 10-fold cross-validation (CV). The RTL models, which considered both concentration and time as weighting factors (i.e., Scheme 3) yielded consistent improvement for 10-fold CV performance on both hourly and monthly scales. The real-time calibration results for PM₁₀ and PM₂.₅ were R² = 0.97 and 0.96, and relative root mean square error (rRMSE) = 12.1% and 12.0%, respectively, and the 10-fold CV results for PM₁₀ and PM₂.₅ were R² = 0.73 and 0.69 and rRMSE = 41.8% and 39.6%, respectively. These results were superior to results from the offline models in previous studies, which were based on historical data on an hourly scale. Moreover, we estimated PM concentrations in the ocean without using land-based variables, and clearly demonstrated the PM transport over time. Because the proposed models are based on the RTL approach, the density of in-situ monitoring sites could be a major uncertainty factor. This study identified that a high error occurred in low-density areas, whereas a low error occurred in high-density areas. The proposed approach can be operated to monitor ground-level PM concentrations in real-time with uncertainty analysis to ensure optimal results.
Показать больше [+] Меньше [-]De novo transcriptomic analysis predicts the effects of phenolic compounds in Ba River on the liver of female sharpbelly (Hemiculter lucidus)
2020
Guo, J. (Jiahua) | Mo, Jiezhang | Zhao, Qian | Han, Qizhi | Kanerva, Mirella | Iwata, Hisato | Li, Qi
This work aimed at predicting the toxic effects of phenolic compounds in Ba River on the health of female sharpbelly (Hemiculter lucidus) by the de novo transcriptomic analysis of the liver. Sharpbelly, a native fish living in freshwater ecosystem of East Asia, were sampled upstream, near, and downstream of a wastewater discharge to the Ba river. Based on the occurrence of bisphenol A (BPA), nonylphenol (NP), and 4-tert-octylphenol (4-t-OP) in the water and fish sampled from each site, up-, mid-, and down-stream were interpreted as control, high, and low treatment groups, respectively. In the mid-stream group the Fulton’s condition factor (CF) and body weight were remarkably increased by approximate 20%; the gonado-somatic index (GSI) and hepatosomatic index (HSI) in mid-stream fish showed a similar increasing trend but lacking of statistical difference. Exposure to wastewater effluent caused 160 and 162 differentially expressed genes (DEGs) in up-mid and down-mid stream groups, respectively. Two sets of DEGs were primarily enriched in the signaling pathways of drug metabolism, endocrine system, cellular process, and lipid metabolism in the mid-stream sharpbelly, which may alter the fish behavior, disrupt the reproductive function, and lead to hypothyroidism, hepatic steatosis, etc. Taken together, our results linked the disrupted signaling pathways with activities of phenolic compounds to predict the potential effects of wastewater effluent on the health of wild fish.
Показать больше [+] Меньше [-]Comparison of moss and pine needles as bioindicators of transboundary polycyclic aromatic hydrocarbon pollution in central Japan
2018
Oishi, Yoshitaka
Atmospheric pollution by polycyclic aromatic hydrocarbons (PAHs) has become a serious problem, especially in Asia, as PAHs can severely affect ecologically important mountainous areas. Using pine needles and mosses as bio-indicators, this study examined PAH pollution in a mountainous study area and evaluated the influence of transboundary PAHs. PAHs in urban areas were also evaluated for comparison. The study sites were alpine areas and urban areas (inland or coastal cities) across central Japan, in the easternmost part of Asia where atmospheric pollutants are transported from mainland Asia. The mean PAH concentrations of pine needles and mosses were 198.9 ± 184.2 ng g⁻¹ dry weight (dw) and 131.8 ± 60.7 ng g⁻¹ dw (mean ± SD), respectively. Pine needles preferentially accumulated PAHs with low molecular weights (LMW PAHs) and exhibited large differences in both PAH concentration and isomer ratios between alpine and urban sites. These differences can be explained by the strong influence of LMW PAHs emitted from domestic sources, which decreased and changed during transport from urban to alpine sites due to dry/wet deposition and photodegradation. In contrast, mosses accumulated a higher ratio of PAHs with high molecular weight (HMW PAHs). A comparison of isomer ratios showed that the PAH source for alpine moss was similar to that for northern coastal cities, which are typically influenced by long-transported PAHs from East Asia. Thus, these results indicate that alpine moss can also be strongly affected by the transboundary PAHs. It is likely that the uptake characteristics of moss, alpine climate, and alpine locations far from urban areas can strengthen the influence of transboundary pollution. Based on these results, the limitations and most effective use of bioindicators of PAH pollution for preserving alpine ecosystems are discussed.
Показать больше [+] Меньше [-]Characteristics of elemental and Pb isotopic compositions in aerosols (PM10-2.5) at the Ieodo Ocean Research Station in the East China Sea
2017
Lee, Sanghee | Han, Changhee | Shin, Daechol | Hur, Soon Do | Jun, Seong Joon | Kim, Young-Taeg | Byun, Do-Seong | Hong, Sungmin
A total of 82 aerosol samples (PM10-2.5) were collected from June 18, 2015 to October 1, 2016 at the remote sea site, the Ieodo Ocean Research Station (IORS), in the East China Sea. Samples were analyzed for 10 elements (Al, Fe, Cu, Zn, As, Mo, Cd, Sb, Tl, and Pb) as well as Pb isotopic composition to characterize temporal variations in elemental concentration levels, and to identify the potential source regions of atmospheric pollutants transported over the remote East China Sea. The results showed that the annual average element concentrations were lowest compared to those at different sites in East Asia, suggesting a very clean background area of IORS, with values ranging from 114 ng m⁻³ for Al to 0.045 ng m⁻³ for Tl. Concentrations averaged seasonally for all the elements revealed the highest levels occurring between winter and spring, and the lowest levels in summer. High enrichment factors (EF) of more than 100 for trace elements suggest that these elements originated mostly from anthropogenic sources. Coupling the Pb isotopic composition with a back trajectory analysis identified the potential source regions for each sample. Our approach identified China as a dominant contributor affecting atmospheric composition changes at IORS, the remote area of the East China Sea. As the largest anthropogenic emission source in East Asia, China contributed to almost 100% of the elemental concentration levels in winter and spring, ∼53% in summer and ∼63% in autumn. Because IORS's ambient air is sensitive to even slight changes in pollutant loading due to the significantly low pollution levels, long-term monitoring of air quality at IORS will provide invaluable information on the progress and efforts of atmospheric pollution management linked to emission controls in East Asian countries, especially China.
Показать больше [+] Меньше [-]Trans-Pacific transport of dust aerosols from East Asia: Insights gained from multiple observations and modeling
2017
Guo, Jianping | Lou, Mengyun | Miao, Yucong | Wang, Yuan | Zeng, Zhaoliang | Liu, Huan | He, Jing | Xu, Hui | Wang, Fu | Min, Min | Zhai, Panmao
East Asia is one of the world's largest sources of dust and anthropogenic pollution. Dust particles originating from East Asia have been recognized to travel across the Pacific to North America and beyond, thereby affecting the radiation incident on the surface as well as clouds aloft in the atmosphere. In this study, integrated analyses are performed focusing on one trans-Pacific dust episode during 12–22 March 2015, based on space-borne, ground-based observations, reanalysis data combined with Hybrid Single Particle Lagrangian Integrated Trajectory Model (HYSPLIT), and the Weather Research and Forecasting Model coupled with Chemistry (WRF-Chem). From the perspective of synoptic patterns, the location and strength of Aleutian low pressure system largely determined the eastward transport of dust plumes towards western North America. Multi-sensor satellite observations reveal that dust aerosols in this episode originated from the Taklimakan and Gobi Deserts. Moreover, the satellite observations suggest that the dust particles can be transformed to polluted particles over the East Asian regions after encountering high concentration of anthropogenic pollutants. In terms of the vertical distribution of polluted dust particles, at the very beginning, they were mainly located in the altitudes ranging from 1 km to 7 km over the source region, then ascended to 2 km–9 km over the Pacific Ocean. The simulations confirm that these elevated dust particles in the lower free troposphere were largely transported along the prevailing westerly jet stream. Overall, observations and modeling demonstrate how a typical springtime dust episode develops and how the dust particles travel over the North Pacific Ocean all the way to North America.
Показать больше [+] Меньше [-]Global-scale patterns in anthropogenic Pb contamination reconstructed from natural archives
2016
Marx, Samuel K. | Rashid, Shaqer | Stromsoe, Nicola
During the past two centuries metal loads in the Earth's atmosphere and ecosystems have increased significantly over pre-industrial levels. This has been associated with deleterious effects to ecosystem processes and human health. The magnitude of this toxic metal burden, as well as the spatial and temporal patterns of metal enrichment, is recorded in sedimentary archives across the globe. This paper presents a compilation of selected Pb contamination records from lakes (n = 10), peat mires (n = 10) and ice fields (n = 7) from Europe, North and South America, Asia, Australia and the Northern and Southern Hemisphere polar regions. These records quantify changes in Pb enrichment in remote from source environments. The presence of anthropogenic Pb in the environment has a long history, extending as far back as the early to mid-Holocene in North America, Europe and East Asia. However, results show that Pb contamination in the Earth's environment became globally ubiquitous at the beginning of the Second Industrial Revolution (c.1850–1890 CE), after which the magnitude of Pb contamination increased significantly. This date therefore serves as an effective global marker for the onset of the Anthropocene. Current global average Pb enrichment rates are between 6 and 35 times background, however Pb contamination loads are spatially variable. For example, they are >100 times background in Europe and North America and 5–15 times background in Antarctica. Despite a recent decline in Pb loads in some regions, most notably Europe and North America, anthropogenic Pb remains highly enriched and universally present in global ecosystems, while concentrations are increasing in some regions (Australia, Asia and parts of South America and Antarctica). There is, however, a paucity of Pb enrichment records outside of Europe, which limits assessments of global contamination.
Показать больше [+] Меньше [-]Improvement of aerosol optical properties modeling over Eastern Asia with MODIS AOD assimilation in a global non-hydrostatic icosahedral aerosol transport model
2014
Dai, Tie | Schutgens, Nick A.J. | Gotō, Daisuke | Shi, Guangyu | Nakajima, Teruyuki
A new global aerosol assimilation system adopting a more complex icosahedral grid configuration is developed. Sensitivity tests for the assimilation system are performed utilizing satellite retrieved aerosol optical depth (AOD) from the Moderate Resolution Imaging Spectroradiometer (MODIS), and the results over Eastern Asia are analyzed. The assimilated results are validated through independent Aerosol Robotic Network (AERONET) observations. Our results reveal that the ensemble and local patch sizes have little effect on the assimilation performance, whereas the ensemble perturbation method has the largest effect. Assimilation leads to significantly positive effect on the simulated AOD field, improving agreement with all of the 12 AERONET sites over the Eastern Asia based on both the correlation coefficient and the root mean square difference (assimilation efficiency). Meanwhile, better agreement of the Ångström Exponent (AE) field is achieved for 8 of the 12 sites due to the assimilation of AOD only.
Показать больше [+] Меньше [-]The sensitivities of ozone and PM2.5 concentrations to the satellite-derived leaf area index over East Asia and its neighboring seas in the WRF-CMAQ modeling system
2022
Park, Jincheol | Jung, Jia | Choi, Yunsoo | Mousavinezhad, Seyedali | Pouyaei, Arman
Vegetation plays an important role as both a sink of air pollutants via dry deposition and a source of biogenic VOC (BVOC) emissions which often provide the precursors of air pollutants. To identify the vegetation-driven offset between the deposition and formation of air pollutants, this study examines the responses of ozone and PM₂.₅ concentrations to changes in the leaf area index (LAI) over East Asia and its neighboring seas, using up-to-date satellite-derived LAI and green vegetation fraction (GVF) products. Two LAI scenarios that examine (1) table-prescribed LAI and GVF from 1992 to 1993 AVHRR and 2001 MODIS products and (2) reprocessed 2019 MODIS LAI and 2019 VIIRS GVF products were used in WRF-CMAQ modeling to simulate ozone and PM₂.₅ concentrations for June 2019. The use of up-to-date LAI and GVF products resulted in monthly mean LAI differences ranging from −56.20% to 96.81% over the study domain. The increase in LAI resulted in the differences in hourly mean ozone and PM₂.₅ concentrations over inland areas ranging from 0.27 ppbV to −7.17 ppbV and 0.89 μg/m³ to −2.65 μg/m³, and the differences of those over the adjacent sea surface ranging from 0.69 ppbV to −2.86 ppbV and 3.41 μg/m³ to −7.47 μg/m³. The decreases in inland ozone and PM₂.₅ concentrations were mainly the results of dry deposition accelerated by increases in LAI, which outweighed the ozone and PM₂.₅ formations via BVOC-driven chemistry. Some inland regions showed further decreases in PM₂.₅ concentrations due to reduced reactions of PM₂.₅ precursors with hydroxyl radicals depleted by BVOCs. The reductions in sea surface ozone and PM₂.₅ concentrations were accompanied by the reductions in those in upwind inland regions, which led to less ozone and PM₂.₅ inflows. The results suggest the importance of the selective use of vegetation parameters for air quality modeling.
Показать больше [+] Меньше [-]Chinese province-scale source apportionments for sulfate aerosol in 2005 evaluated by the tagged tracer method
2017
Appropriate policies to improve air quality by reducing anthropogenic emissions are urgently needed. This is typified by the particulate matter (PM) problem and it is well known that one type of PM, sulfate aerosol (SO42−), has a large-scale impact due to long range transport. In this study we evaluate the source–receptor relationships of SO42− over East Asia for 2005, when anthropogenic sulfur dioxide (SO2) emissions from China peaked. SO2 emissions from China have been declining since 2005–2006, so the possible maximum impact of Chinese contributions of SO42− is evaluated. This kind of information provides a foundation for policy making and the estimation of control effects. The tagged tracer method was applied to estimate the source apportionment of SO42− for 31 Chinese province-scale regions. In addition, overall one-year source apportionments were evaluated to clarify the seasonal dependency. Model performance was confirmed by comparing with ground-based observations over mainland China, Taiwan, Korea, and Japan, and the model results fully satisfied the performance goal for PM. We found the following results. Shandong and Hebei provinces, which were the largest and second largest SO2 sources in China, had the greatest impact over the whole of East Asia with apportionments of around 10–30% locally and around 5–15% in downwind receptor regions during the year. Despite large SO2 emissions, the impact of south China (e.g., Guizhou, Guangdong, and Sichuan provinces) was limited to local impact. These results suggest that the reduction policy in south China contributes to improving the local air quality, whereas policies in north and central China are beneficial for both the whole of China and downwind regions. Over Taiwan, Korea, and Japan, the impact of China was dominant; however, local contributions were important during summer.
Показать больше [+] Меньше [-]Nitrogen burden from atmospheric deposition in East Asian oceans in 2010 based on high-resolution regional numerical modeling
2021
Itahashi, Syuichi | Hayashi, Kentaro | Takeda, Shigenobu | Umezawa, Yu | Matsuda, Kazuhide | Sakurai, Tatsuya | Uno, Itsushi
East Asian oceans are possibly affected by a high nitrogen (N) burden because of the intense anthropogenic emissions in this region. Based on high-resolution regional chemical transport modeling with horizontal grid scales of 36 and 12 km, we investigated the N burden into East Asian oceans via atmospheric deposition in 2010. We found a high N burden of 2–9 kg N ha⁻¹ yr⁻¹ over the Yellow Sea, East China Sea (ECS), and Sea of Japan. Emissions over East Asia were dominated by ammonia (NH₃) over land and nitrogen oxides (NOₓ) over oceans, and N deposition was dominated by reduced N over most land and open ocean, whereas it was dominated by oxidized N over marginal seas and desert areas. The verified numerical modeling identified that the following processes were quantitatively important over East Asian oceans: the dry deposition of nitric acid (HNO₃), NH₃, and coarse-mode (aerodynamic diameter greater than 2.5 μm) NO₃⁻, and wet deposition of fine-mode (aerodynamic diameter less than 2.5 μm) NO₃⁻ and NH₄⁺. The relative importance of the dry deposition of coarse-mode NO₃⁻ was higher over open ocean. The estimated N deposition to the whole ECS was 390 Gg N yr⁻¹; this is comparable to the discharge from the Yangtze River to the ECS, indicating the significant contribution of atmospheric deposition. Based on the high-resolution modeling over the ECS, a tendency of high deposition in the western ECS and low deposition in the eastern ECS was found, and a variety of deposition processes were estimated. The dry deposition of coarse-mode NO₃⁻ and wet deposition of fine-mode NH₄⁺ were the main factors, and the wet deposition of fine-mode NO₃⁻ over the northeastern ECS and wet deposition of coarse-mode NO₃⁻ over the southeastern ECS were also found to be significant processes determining N deposition over the ECS.
Показать больше [+] Меньше [-]