Уточнить поиск
Результаты 1-10 из 1,164
Humpback whales (Megaptera novaeangliae) breeding off Mozambique and Ecuador show geographic variation of persistent organic pollutants and isotopic niches
2020
Remili, Anaïs | Gallego Reyes, Pedro | Pinzone, Marianna | Castro, Cristina | Jauniaux, Thierry | Garigliany, Mutien-Marie | Malarvannan, Govindan | Covaci, Adrian | Das, Krishna | FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
peer reviewed | Humpback whales (Megaptera novaeangliae) from the Southern Hemisphere carry information on persistent organic pollutants (POPs) from their feeding zones in Antarctica to their breeding grounds, making this species a sentinel of contaminants accumulation in the Southern Ocean. This study aimed to evaluate driving factors, namely feeding areas, trophic level, and sex, affecting POP concentrations in the blubber of humpback whales breeding off Mozambique and off Ecuador. Biopsies of free-ranging humpback whales including blubber and skin were collected in 2014 and 2015 from Ecuador (n = 59) and in 2017 from Mozambique (n = 89). In both populations, HCB was the major contaminant followed by DDTs > CHLs > PCBs > HCHs > PBDEs. POP concentrations were significantly higher in males compared to females. HCB, DDTs, HCHs and PBDEs were significantly different between whales from the Mozambique population and the Ecuador population. Sex and feeding habits were important driving factors accounting for POP concentrations in Ecuador whales. The whales from our study had some of the lowest POP concentrations measured for humpback whales in the world. These whales fed predominantly on krill as reflected from the low δ13C and δ15N values measured in the skin. However, the isotopic niches of whales from Mozambique and Ecuador did not overlap indicating that the two populations are feeding in different areas of the Southern Ocean. | EXPOSURE OF HUMPBACK WHALES FROM THE SOUTHERN HEMISPHERE TO PERSISTENT ORGANIC POLLUTANTS: INFLUENCE OF THEIR ISOTOPIC NICHE, SEX AND AGE DETERMINED BY EPIGENETICS
Показать больше [+] Меньше [-]Plasma concentrations of organohalogenated contaminants in white-tailed eagle nestlings – The role of age and diet
2019
Løseth, M. E. | Briels, N. | Eulaers, I. | Nygård, T. | Malarvannan, G. | Poma, G. | Covaci, A. | Herzke, D. | Bustnes, J. O. | Lepoint, Gilles | Jenssen, B. M. | Jaspers, V. L. B.
peer reviewed | Concentrations of organohalogenated contaminants (OHCs) can show significant temporal and spatial variation in the environment and wildlife. Most of the variation is due to changes in use and production, but environmental and biological factors may also contribute to the variation. Nestlings of top predators are exposed to maternally transferred OHCs in the egg and through their dietary intake after hatching. The present study investigated spatial and temporal variation of OHCs and the role of age and diet on these variations in plasma of Norwegian white-tailed eagle (Haliaeetus albicilla) nestlings. The nestlings were sampled at two locations, Smøla and Steigen, in 2015 and 2016. The age of the nestlings was recorded (range: 44 – 87 days old) and stable carbon and nitrogen isotopes (δ13C and δ15N) were applied as dietary proxies for carbon source and trophic position, respectively. In total, 14 polychlorinated biphenyls (PCBs, range: 0.82 – 59.05 ng/mL), 7 organochlorinated pesticides (OCPs, range: 0.89 – 52.19 ng/mL), 5 polybrominated diphenyl ethers (PBDEs, range: 0.03 – 2.64 ng/mL) and 8 perfluoroalkyl substances (PFASs, range: 4.58 – 52.94 ng/mL) were quantified in plasma samples from each location and year. The OHC concentrations, age and dietary proxies displayed temporal and spatial variations. The age of the nestlings was indicated as the most important predictor for OHC variation as the models displayed significantly decreasing plasma concentrations of PCBs, OCPs, and PBDEs with increasing age, while concentrations of PFASs were significantly increasing with age. Together with age, the variations in PCB, OCP and PBDE concentrations were also explained by δ13C and indicated decreasing concentrations with a more marine diet. Our findings emphasise age and diet as important factors to consider when investigating variations in plasma OHC concentrations in nestlings. © 2018 Elsevier Ltd | 230465
Показать больше [+] Меньше [-]Factors affecting mercury concentrations in two oceanic cephalopods of commercial interest from the southern Caribbean
2021
Barcia, Laura Garcia | Pinzone, Marianna | Lepoint, Gilles | Pau, Cédric | Das, Krishna | Kiszka, Jeremy | FOCUS - Freshwater and OCeanic science Unit of reSearch - ULiège
peer reviewed | Mercury (Hg) concentrations have significantly increased in oceans during the last century. This element accumulates in marine fauna and can reach toxic levels. Seafood consumption is the main pathway of methylmercury (MeHg) toxicity in humans. Here, we analyzed total Hg (T-Hg) concentrations in two oceanic squid species (Ommastrephes bartramii and Thysanoteuthis rhombus) of an increasing commercial interest off Martinique, French West Indies. Stable isotope ratios reveal a negative linear relationship between δ15N or δ13C in diamondback squid samples. No significant trend was observed between δ34S values and T-Hg concentrations, contrasting with the sulfate availability and sulfide abundance hypotheses. This adds to a growing body of evidence suggesting Hg methylation via sulfate-reducing bacteria is not the main mechanism driving Hg bioavailability in mesopelagic organisms. All squid samples present T-Hg levels below the maximum safe consumption limit (0.5 ppm), deeming the establishment of a commercial squid fishery in the region safe for human consumption.
Показать больше [+] Меньше [-]Evolutionary approach for pollution study: The case of ionizing radiation
2024
Car, Clément | Quevarec, Loïc | Gilles, André | Réale, Denis | Bonzom, Jean-Marc | Laboratoire d'écologie et d'écotoxicologie des radionucléides (IRSN/PSE-ENV/SERPEN/LECO) ; Service de Radioprotection des Populations et de l’Environnement (IRSN/PSE-ENV/SERPEN) ; Institut de Radioprotection et de Sûreté Nucléaire (IRSN)-Institut de Radioprotection et de Sûreté Nucléaire (IRSN) | Risques, Ecosystèmes, Vulnérabilité, Environnement, Résilience (RECOVER) ; Aix Marseille Université (AMU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Département des Sciences Biologiques, Université Du Québec à Montréal (UQAM) | Institut de Radioprotection et de Sûreté Nucléaire - IRSN
International audience | Estimating the consequences of environmental changes, specifically in a global change context, is essential for conservation issues. In the case of pollutants, the interest in using an evolutionary approach to investigate their consequences has been emphasized since the 2000s, but these studies remain rare compared to the characterization of direct effects on individual features. We focused on the study case of anthropogenic ionizing radiation because, despite its potential strong impact on evolution, the scarcity of evolutionary approaches to study the biological consequences of this stressor is particularly true. In this study, by investigating some particular features of the biological effects of this stressor, and by reviewing existing studies on evolution under ionizing radiation, we suggest that evolutionary approach may help provide an integrative view on the biological consequences of ionizing radiation. We focused on three topics: (i) the mutagenic properties of ionizing radiation and its disruption of evolutionary processes, (ii) exposures at different time scales, leading to an interaction between past and contemporary evolution, and (iii) the special features of contaminated areas called exclusion zones and how evolution could match field and laboratory observed effects. This approach can contribute to answering several key issues in radioecology: to explain species differences in the sensitivity to ionizing radiation, to improve our estimation of the impacts of ionizing radiation on populations, and to help identify the environmental features impacting organisms (e.g., interaction with other pollution, migration of populations, anthropogenic environmental changes). Evolutionary approach would benefit from being integrated to the ecological risk assessment process.
Показать больше [+] Меньше [-]Ecotoxicological impact of the antihypertensive valsartan on earthworms, extracellular enzymes and soil bacterial communities
2021
Gallego, Sara | Nos, David | Montemurro, Nicola | Sanchez-Hernandez, Juan | Pérez, Sandra | Solé, Montserrat | Martin-Laurent, Fabrice | Agroécologie [Dijon] ; Université de Bourgogne (UB)-AgroSup Dijon - Institut National Supérieur des Sciences Agronomiques, de l'Alimentation et de l'Environnement-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institute of Environmental Assessment and Water Research (IDAEA) ; Consejo Superior de Investigaciones Cientificas [España] = Spanish National Research Council [Spain] (CSIC) | Inst Marine Sci ICM CSIC, Renewable Marine Resources Dept, Barcelona, Spain. | Univ Castilla La Mancha, Inst Environm Sci ICAM, Lab Ecotoxicol, Toledo 45071, Spain
International audience | The use of reclaimed water in agriculture represents a promising alternative to relieve pressure on freshwater supplies, especially in arid or semiarid regions facing water scarcity. However, this implies introducing micropollutants such as pharmaceutical residues into the environment. The fate and the ecotoxicological impact of valsartan, an antihypertensive drug frequently detected in wastewater effluents, were evaluated in soil-earthworm microcosms. Valsartan dissipation in the soil was concomitant with valsartan acid formation. Although both valsartan and valsartan acid accumulated in earthworms, no effect was observed on biomarkers of exposure (acetylcholinesterase, glutathione S-transferase and carboxylesterase activities). The geometric mean index of soil enzyme activity increased in the soils containing earthworms, regardless of the presence of valsartan. Therefore, earthworms increased soil carboxylesterase, dehydrogenase, alkaline phosphatase, beta-glucosidase, urease and protease activities. Although bacterial richness significantly decreased following valsartan exposure, this trend was enhanced in the presence of earthworms with a significant impact on both alpha and beta microbial diversity. The operational taxonomic units involved in these changes were related to four (Proteobacteria, Bacteroidetes, Actinobacteria and Firmicutes) of the eight most abundant phyla. Their relative abundances significantly increased in the valsartan-treated soils containing earthworms, suggesting the presence of potential valsartan degraders. The ecotoxicological effect of valsartan on microbes was strongly altered in the earthworm-added soils, hence the importance of considering synergistic effects of different soil organisms in the environmental risk assessment of pharmaceutical active compounds. (C) 2021 Elsevier Ltd. All rights reserved.
Показать больше [+] Меньше [-]Elasmobranchs as bioindicators of pollution in the marine environment
2022
Alves, Luís M.F. | Lemos, Marco F.L. | Cabral, Henrique | Novais, Sara | Marine and Environmental Sciences Centre [Portugal] (MARE) ; Instituto Universitário de Ciências Psicológicas, Sociais e da Vida = University Institute of Psychological, Social and Life Sciences (ISPA) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)
International audience | Bioindicator species are increasingly valuable in environmental pollution monitoring, and elasmobranch species include many suitable candidates for that role. By measuring contaminants and employing biomarkers of effect inrelevant elasmobranch species, scientists may gain important insights about the impacts of pollution in marine ecosystems. This review compiles biomarkers applied in elasmobranchs to assess the effect of pollutants (e.g.,metals, persistent organic pollutants, and plastics), and the environmental changes induced by anthropogenic activities (e.g., shifts in marine temperature, pH, and oxygenation). Over 30 biomarkers measured in more than12 species were examined, including biotransformation biomarkers (e.g., cytochrome P450 1A), oxidative stress-related biomarkers (e.g., superoxide anion, lipid peroxidation, catalase, and vitamins), stress proteins (e.g., heatshock protein 70), reproductive and endocrine biomarkers (e.g., vitellogenin), osmoregulation biomarkers (e.g., trimethylamine N-oxide, Na+/K+-ATPase, and plasma ions), energetic and neurotoxic biomarkers (e.g., lactatedehydrogenase, lactate, and cholinesterases), and histopathological and morphologic biomarkers (e.g., tissue lesions and gross indices).
Показать больше [+] Меньше [-]Acetylcholinesterase activity in the terrestrial snail<em> Xeropicta derbentina</em> transplanted in apple orchards with different pesticide management strategies
2011
Mazzia, Christophe | Capowiez, Yvan | Sanchez-Hernandez, Juan C. | Köhler, Heinz-R. | Triebskorn, Rita | Rault-Léonardon, Magali | Abeilles et Environnement (AE) ; Institut National de la Recherche Agronomique (INRA)-Avignon Université (AU) | Unité de recherche Plantes et Systèmes de Culture Horticoles (PSH) ; Institut National de la Recherche Agronomique (INRA) | Universidad de Castilla-La Mancha = University of Castilla-La Mancha (UCLM) | Eberhard Karls Universität Tübingen = Eberhard Karls University of Tuebingen | Steinbeis Transfer-Center for Ecotoxicology and Ecophysiology
International audience | Apple orchards are highly manipulated crops in which large amounts of pesticides are used. Some of these pesticides lack target specificity and can cause adverse effects in non-target organisms. In order to evaluate the environmental risk of these products, the use of transplanted sentinel organisms avoids side-effects from past events and facilitate comparison of multiple sites in a short time. We released specimens of the terrestrial snail <em>Xeropicta derbentina</em> in each 5 of two kinds of apple orchards with either conventional or organic management strategies plus in a single abandoned orchard. After one month, individuals were retrieved in order to measure acetylcholinesterase (AChE) activity. Mean values of AChE activity were significantly reduced in all conventional apple orchards compared to the others. Results show that the measurement of biomarkers such as AChE inhibition in transplated <em>X. derbentina</em> could be useful in the environmental risk assessment of post-authorized pesticides
Показать больше [+] Меньше [-]Effects of plant protection products on ecosystem functions provided by terrestrial invertebrates
2024
Bertrand, Colette | Aviron, Stéphanie | Pelosi, Céline | Faburé, Juliette | Le Perchec, Sophie | Mamy, Laure | Rault, Magali | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Biodiversité agroécologie et aménagement du paysage (UMR BAGAP) ; Ecole supérieure d'Agricultures d'Angers (ESA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Rennes Angers ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Direction pour la Science Ouverte (DipSO) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS)
International audience | Plant protection products (PPP) are extensively used to protect plants against harmful organisms, but they also have unintended effects on non-target organisms, especially terrestrial invertebrates. The impact of PPP on ecosystem functions provided by these non-target invertebrates remains, however, unclear. The objectives of this article were to review PPP impacts on the ecosystem functions provided by pollinators, predators and parasitoids, and soil organisms, and to identify the factors that aggravate or mitigate PPP effects. The literature highlights that PPP alter several ecosystem functions: provision and maintenance of biodiversity, pollination, biotic interactions and habitat completeness in terrestrial ecosystems, and organic matter and soil structure dynamics. However, there are still a few studies dealing with ecosystem functions, with sometimes contradictory results, and consequences on agricultural provisioning services remain unclear. The model organisms used to assess PPP ecotoxicological effects are still limited, and should be expanded to better cover the wide functional diversity of terrestrial invertebrates. Data are lacking on PPP sublethal, transgenerational, and “cocktail” effects, and on their multitrophic consequences. In empirical assessments, studies on PPP unintended effects should consider agricultural-pedoclimatic contexts because they influence the responses of non-target organisms and associated ecosystem functions to PPP. Modeling might be a promising way to account for the complex interactions among PPP mixtures, biodiversity, and ecosystem functioning.
Показать больше [+] Меньше [-]Impacts of neonicotinoids on biodiversity: a critical review
2023
Mamy, Laure | Pesce, Stéphane | Sanchez, Wilfried | Aviron, Stéphanie | Bedos, Carole | Berny, Philippe | Bertrand, Colette | Betoulle, Stéphane | Charles, Sandrine | Chaumot, Arnaud | Coeurdassier, Michael | Coutellec, Marie-Agnès | Crouzet, Olivier | Faburé, Juliette | Fritsch, Clémentine | Gonzalez, Patrice | Hedde, Mickael | Leboulanger, Christophe | Margoum, Christelle | Mougin, Christian | Munaron, Dominique | Nélieu, Sylvie | Pelosi, Céline | Rault, Magali | Sucré, Elliott | Thomas, Marielle | Tournebize, Julien | Leenhardt, Sophie | Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | French Office for Biodiversity (OFB) through the national Ecophyto plan
International audience | Neonicotinoids are the most widely used class of insecticides in the world but they have raised numerous concerns regarding their effects on biodiversity. Thus, the objective of this work was to do a critical review of the contamination of the environment (soil, water, air, biota) by neonicotinoids (acetamiprid, clothianidin, imidacloprid, thiacloprid, thiamethoxam) and of their impacts on terrestrial and aquatic biodiversity. Neonicotinoids are very frequently detected in soils and in freshwater, and they are also found in the air. They have only been recently monitored in coastal and marine environments, but some studies already reported the presence of imidacloprid and thiamethoxam in transitional or semi-enclosed ecosystems (lagoons, bays and estuaries). The contamination of the environment leads to the exposure and to the contamination of non-target organisms, and to negative effects on biodiversity. Direct impacts of neonicotinoids are mainly reported on terrestrial invertebrates (e.g., pollinators, natural enemies, earthworms) and vertebrates (e.g., birds), and on aquatic invertebrates (e.g., arthropods). Impacts on aquatic vertebrate populations and communities, as well as on microorganisms, are less documented. In addition to their toxicity to directly exposed organisms, neonicotinoid induce indirect effects via trophic cascades as demonstrated in several species (terrestrial and aquatic invertebrates). However, more data are needed to reach firmer conclusions and to get a clearer picture of such indirect effects. Finally, we identified specific knowledge gaps that need to be filled to better understand the effects of neonicotinoids on terrestrial, freshwater and marine organisms, as well as on ecosystem services associated with these biotas.
Показать больше [+] Меньше [-]Main conclusions and perspectives from the collective scientific assessment of the effects of plant protection products on biodiversity and ecosystem services along the land–sea continuum in France and French overseas territories
2023
Pesce, Stéphane | Mamy, Laure | Sanchez, Wilfried | Amichot, Marcel | Artigas, Joan | Aviron, Stéphanie | Barthélémy, Carole | Beaudouin, Rémy | Bedos, Carole | Bérard, Annette | Berny, Philippe | Bertrand, Cédric | Bertrand, Colette | Betoulle, Stéphane | Bureau-Point, Eve | Charles, Sandrine | Chaumot, Arnaud | Chauvel, Bruno | Coeurdassier, Michael | Corio-Costet, M.-F. | Coutellec, Marie-Agnès | Crouzet, Olivier | Doussan, Isabelle | Fabure, Juliette | Fritsch, Clémentine | Gallai, Nicola | Gonzalez, Patrice | Gouy-Boussada, Véronique | Hedde, Mickael | Langlais, Alexandra | Le Bellec, Fabrice | Leboulanger, Christophe | Margoum, Christelle | Martin-Laurent, Fabrice | Mongruel, Rémi | Morin, Soizic | Mougin, Christian | Munaron, Dominique | Nelieu, Sylvie | Pélosi, Céline | Rault, Magali | Sabater, Sergi | Stachowski-Haberkorn, Sabine | Sucré, Elliott | Thomas, Marielle | Tournebize, Julien | Leenhardt, Sophie | RiverLy - Fonctionnement des hydrosystèmes (RiverLy) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Ecologie fonctionnelle et écotoxicologie des agroécosystèmes (ECOSYS) ; AgroParisTech-Université Paris-Saclay-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Institut Sophia Agrobiotech (ISA) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Université Côte d'Azur (UCA) | Laboratoire Microorganismes : Génome et Environnement (LMGE) ; Centre National de la Recherche Scientifique (CNRS)-Université Clermont Auvergne (UCA) | Biodiversité agroécologie et aménagement du paysage (UMR BAGAP) ; Ecole supérieure d'Agricultures d'Angers (ESA)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Rennes Angers ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Laboratoire Population-Environnement-Développement (LPED) ; Institut de Recherche pour le Développement (IRD)-Aix Marseille Université (AMU) | Institut National de l'Environnement Industriel et des Risques (INERIS) | Environnement Méditerranéen et Modélisation des Agro-Hydrosystèmes (EMMAH) ; Avignon Université (AU)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Interactions Cellules Environnement - UR (ICE) ; VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS) | Centre de recherches insulaires et observatoire de l'environnement (CRIOBE) ; Université de Perpignan Via Domitia (UPVD)-École Pratique des Hautes Études (EPHE) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) | Stress Environnementaux et BIOsurveillance des milieux aquatiques (SEBIO) ; Institut National de l'Environnement Industriel et des Risques (INERIS)-Université de Reims Champagne-Ardenne (URCA)-Université Le Havre Normandie (ULH) ; Normandie Université (NU)-Normandie Université (NU)-SFR Condorcet ; Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS)-Université de Reims Champagne-Ardenne (URCA)-Centre National de la Recherche Scientifique (CNRS) | Centre Norbert Elias (CNELIAS) ; École des hautes études en sciences sociales (EHESS)-Avignon Université (AU)-Aix Marseille Université (AMU)-Centre National de la Recherche Scientifique (CNRS) | Laboratoire de Biométrie et Biologie Evolutive - UMR 5558 (LBBE) ; Université Claude Bernard Lyon 1 (UCBL) ; Université de Lyon-Université de Lyon-Institut National de Recherche en Informatique et en Automatique (Inria)-VetAgro Sup - Institut national d'enseignement supérieur et de recherche en alimentation, santé animale, sciences agronomiques et de l'environnement (VAS)-Centre National de la Recherche Scientifique (CNRS) | Agroécologie [Dijon] ; Université de Bourgogne (UB)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Dijon ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Laboratoire Chrono-environnement (UMR 6249) (LCE) ; Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC) ; Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC) | Santé et agroécologie du vignoble (UMR SAVE) ; Université de Bordeaux (UB)-Institut des Sciences de la Vigne et du Vin (ISVV)-Ecole Nationale Supérieure des Sciences Agronomiques de Bordeaux-Aquitaine (Bordeaux Sciences Agro)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Dynamique et durabilité des écosystèmes : de la source à l’océan (DECOD) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Office français de la biodiversité (OFB) | Groupe de Recherche en Droit, Economie et Gestion (GREDEG) ; Université Nice Sophia Antipolis (1965 - 2019) (UNS) ; COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-COMUE Université Côte d'Azur (2015-2019) (COMUE UCA)-Centre National de la Recherche Scientifique (CNRS)-Université Côte d'Azur (UCA) | Laboratoire d'Etude et de Recherche sur l'Economie, les Politiques et les Systèmes Sociaux (LEREPS) ; Université Toulouse Capitole (UT Capitole) ; Université de Toulouse (UT)-Université de Toulouse (UT)-Université Toulouse - Jean Jaurès (UT2J) ; Université de Toulouse (UT)-Institut d'Études Politiques [IEP] - Toulouse-École Nationale Supérieure de Formation de l'Enseignement Agricole de Toulouse-Auzeville (ENSFEA) | Environnements et Paléoenvironnements OCéaniques (EPOC) ; Observatoire aquitain des sciences de l'univers (OASU) ; Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Université Sciences et Technologies - Bordeaux 1 (UB)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-École Pratique des Hautes Études (EPHE) ; Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS) | Ecologie fonctionnelle et biogéochimie des sols et des agro-écosystèmes (UMR Eco&Sols) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad)-Institut de Recherche pour le Développement (IRD)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE)-Institut Agro Montpellier ; Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro)-Institut national d'enseignement supérieur pour l'agriculture, l'alimentation et l'environnement (Institut Agro) | Institut de l'Ouest : Droit et Europe (IODE) ; Université de Rennes (UR)-Centre National de la Recherche Scientifique (CNRS) | Fonctionnement agroécologique et performances des systèmes de cultures horticoles (UPR HORTSYS) ; Centre de Coopération Internationale en Recherche Agronomique pour le Développement (Cirad) | MARine Biodiversity Exploitation and Conservation (UMR MARBEC) ; Institut de Recherche pour le Développement (IRD)-Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Centre National de la Recherche Scientifique (CNRS)-Université de Montpellier (UM) | Aménagement des Usages des Ressources et des Espaces marins et littoraux - Centre de droit et d'économie de la mer (AMURE) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER)-Université de Brest (UBO)-Institut Universitaire Européen de la Mer (IUEM) ; Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Université de Brest (UBO)-Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche pour le Développement (IRD)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National de la Recherche Scientifique (CNRS)-Centre National de la Recherche Scientifique (CNRS) | Ecosystèmes aquatiques et changements globaux (UR EABX) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Institut méditerranéen de biodiversité et d'écologie marine et continentale (IMBE) ; Avignon Université (AU)-Aix Marseille Université (AMU)-Institut de recherche pour le développement [IRD] : UMR237-Centre National de la Recherche Scientifique (CNRS) | Universitat de Girona (UdG) | Physiologie et Toxines des Microalgues Toxiques et Nuisibles (PHYTOX) ; Institut Français de Recherche pour l'Exploitation de la Mer (IFREMER) | Centre Universitaire de Formation et de Recherche de Mayotte (CUFR) | Unité de Recherches Animal et Fonctionnalités des Produits Animaux (URAFPA) ; Université de Lorraine (UL)-Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Hydrosystèmes continentaux anthropisés : ressources, risques, restauration (UR HYCAR) ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | Direction de l'Expertise scientifique collective, de la Prospective et des Etudes ; Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement (INRAE) | French Office for Biodiversity (OFB) through the national ECOPHYTO plan
International audience | Preservation of biodiversity and ecosystem services is critical for sustainable development and human well-being. However, an unprecedented erosion of biodiversity is observed and the use of plant protection products (PPP) has been identified as one of its main causes. In this context, at the request of the French Ministries responsible for the Environment, for Agriculture and for Research, a panel of 46 scientific experts ran a nearly 2-year-long (2020-2022) collective scientific assessment (CSA) of international scientific knowledge relating to the impacts of PPP on biodiversity and ecosystem services. The scope of this CSA covered the terrestrial, atmospheric, freshwater, and marine environments (with the exception of groundwater) in their continuity from the site of PPP application to the ocean, in France and French overseas territories, based on international knowledge produced on or transposable to this type of context (climate, PPP used, biodiversity present, etc.). Here, we provide a brief summary of the CSA's main conclusions, which were drawn from about 4500 international publications. Our analysis finds that PPP contaminate all environmental matrices, including biota, and cause direct and indirect ecotoxicological effects that unequivocally contribute to the decline of certain biological groups and alter certain ecosystem functions and services. Levers for action to limit PPP-driven pollution and effects on environmental compartments include local measures from plot to landscape scales and regulatory improvements. However, there are still significant gaps in knowledge regarding environmental contamination by PPPs and its effect on biodiversity and ecosystem functions and services. Perspectives and research needs are proposed to address these gaps.
Показать больше [+] Меньше [-]