Уточнить поиск
Результаты 1-10 из 74
Efficient arsenate removal by magnetite-modified water hyacinth biochar
2016
Zhang, Feng | Wang, Xin | Xionghui, Ji | Ma, Lijuan
Magnetic biochars (MW) prepared by chemical co-precipitation of Fe2+/Fe3+ on water hyacinth biomass followed by pyrolysis exhibited important potential in aqueous As(V) elimination. In comparison, MW2501 outperformed other MWs and exhibited the highest As(V) sorption capacity which was estimated to be 7.4 mg g−1 based on Langmuir-Freundlic model. With solution pH ranging from 3 to 10, As(V) removal efficiency by MW2501 kept stable and consistently higher than 90%. Besides, ∼100% removal of 0.5 mM As(V) can be obtained in the presence of P ≤ 0.1 mM or Cr/Sb ≤ 0.5 mM, indicating a wide applicability of MW2501 for treatment of As-containing water. The predominance of Fe3O4 on MW2501 surface was evidenced by XRD. Ligand exchange between As(V) anion and the hydroxylated surface of Fe3O4 as well as H bond was largely responsible for As(V) sorption as suggested by FTIR. XPS analysis further revealed the dominance of As(V) in the sorbed As on MW2501 surface with co-occurrence of a minor proportion of As(III) (11.45%). In parallel, oxidative transformation of Fe3O4 to Fe2O3 was also suggested by XPS. By a lab-scale column test, the potential and suitability of MW2501 in As-containing water treatment was further confirmed, which could also provide an alternative way to manage and utilize this highly problematic invasive species.
Показать больше [+] Меньше [-]Removal of Cadmium (II) using water hyacinth (Eichhornia crassipes) biochar alginate beads in aqueous solutions
2020
Liu, Cenwei | Ye, Jing | Lin, Yi | Wu, Jian | Price, G.W. | Burton, D. | Wang, Yixiang
Biochar produced from water hyacinths (Eichhornia crassipes) has been demonstrated to be an effective adsorbent for the removal of certain heavy metals and as a means of control for this highly invasive species. This study involved examined the Cd²⁺ sorption dynamics of an alginate encapsulated water hyacinth biochar (BAC) generated at different temperatures and modified using ferric/ferrous sulfate (MBAC). The maximum Cd²⁺ sorption occurred at a pH of 6 and at a solution temperature of 37 °C. Sorption equilibria for the biochar-alginate capsule (BAC) and modified biochar-alginate capsule (MBAC) treatments fit both the Langmuir (R² = 0.876 to 0.99) and Freundlich (R² = 0.849 to 0.971) equations. Langmuir isotherms had a better fit than the Freundlich isotherms, with maximum sorption capacities ranging from 24.2 to 45.8 mg Cd²⁺ g⁻¹. Larger KL values in Freundlich modeling suggest strong bonding of the BAC and MBAC sorbents to Cd²⁺, with values of KL in the MBAC treatments ranging between 31 and 178% greater than the BAC treatments. Cd²⁺ sorption followed pseudo first-order kinetics (R² = 0.926 to 0.991) with greater efficiency of removal using treatments with biochar generated at temperatures >500 °C. Results from this study highlight the potential for biochar-alginate capsules derived from water hyacinth to be effective for the removal of Cd²⁺ from wastewaters.
Показать больше [+] Меньше [-]Effect of metals on microcystin abundance and environmental fate
2017
Dai, Guofei | Peng, Ningyan | Zhong, Jiayou | Yang, Ping | Zou, Binchun | Chen, Hui | Lou, Qian | Fang, Yuanyuan | Zhang, Wei
Metals can react with microcystin (MC), which is released from cyanobacterial blooms through various mechanisms; these reactions may mitigate the environmental and health risks of MCs but may also cause harm to aquatic ecosystems and humans. Several studies were conducted, including laboratory tests, ecological simulations, and a field investigation of Poyang Lake. The laboratory studies showed that Fe3+, Cu2+, and Pb2+ stimulated MC photodegradation under high light intensity at the water–sediment interface, which reduced the MC accumulation in the sediment. In the laboratory studies involving the addition of metal ions to lake sediment containing adsorbed MC, MC biodegradation was inhibited by supplementing with high levels of Fe3+, Cu2+, or Pb2+. Fe3+ and Pb2+ promoted MC accumulation in the hydrophyte Eichhornia crassipes at relatively low concentrations, but this effect decreased with increasing high metal concentrations. An ecological survey in Poyang Lake during the dry season demonstrated that high Fe levels can reduce MC accumulation in the sediment, which could be the result of Fe-mediated photodegradation. The results indicate that metals involved in MC transportation and degradation may play an important role in the environmental fate of MC.
Показать больше [+] Меньше [-]Decomposition characteristics of three different kinds of aquatic macrophytes and their potential application as carbon resource in constructed wetland
2017
Wu, Suqing | He, Shengbing | Zhou, Weili | Gu, Jianya | Huang, Jungchen | Gao, Lei | Zhang, Xu
Decomposition of aquatic macrophytes usually generates significant influence on aquatic environment. Study on the aquatic macrophytes decomposition may help reusing the aquatic macrophytes litters, as well as controlling the water pollution caused by the decomposition process. This study verified that the decomposition processes of three different kinds of aquatic macrophytes (water hyacinth, hydrilla and cattail) could exert significant influences on water quality of the receiving water, including the change extent of pH, dissolved oxygen (DO), the contents of carbon, nitrogen and phosphorus, etc. The influence of decomposition on water quality and the concentrations of the released chemical materials both followed the order of water hyacinth > hydrilla > cattail. Greater influence was obtained with higher dosage of plant litter addition. The influence also varied with sediment addition. Moreover, nitrogen released from the decomposition of water hyacinth and hydrilla were mainly NH3-N and organic nitrogen while those from cattail litter included organic nitrogen and NO3⁻-N. After the decomposition, the average carbon to nitrogen ratio (C/N) in the receiving water was about 2.6 (water hyacinth), 5.3 (hydrilla) and 20.3 (cattail). Therefore, cattail litter might be a potential plant carbon source for denitrification in ecological system of a constructed wetland.
Показать больше [+] Меньше [-]Synergistic removal of cadmium and organic matter by a microalgae-endophyte symbiotic system (MESS): An approach to improve the application potential of plant-derived biosorbents
2020
Plant-derived materials as environmentally friendly biosorbents to remove heavy metals from wastewater have been extensively studied. However, the chemical oxygen demand (COD) increase caused by the plant-derived biosorbent has not been considered previously. In this study, water hyacinth was used as biosorbent to remove Cd(II) from wastewater. About 66% of Cd(II) was removed by the biosorbent with a maximum biosorption capacity (qₘₐₓ) of 21.6 mg g⁻¹. However, the COD of the filtrate increased from 0 to 292 mg L⁻¹ during this process. Subsequently, endophytes, microalgae and the microalgae-endophyte symbiotic system (MESS) were assessed for the simultaneous Cd(II) and COD removal. Among these three systems, the MESS achieved the best performance. After 3 d of inoculation, the extent of total Cd(II) removal increased to 99.2% while COD decreased to 77 mg L⁻¹. This study provides a new insight into the application of a plant-derived biosorbent in combination with microalgae and endophytes for the effective treatment of heavy metal-bearing wastewater.
Показать больше [+] Меньше [-]Competitive sorption of heavy metals by water hyacinth roots
2016
Zheng, Jia-Chuan | Liu, Hou-Qi | Feng, Huimin | Li, Wen-Wei | Lam, Michael Hon-Wah | Lam, Paul Kwan-Sing | Yu, Han-Qing
Heavy metal pollution is a global issue severely constraining aquaculture practices, not only deteriorating the aquatic environment but also threatening the aquaculture production. One promising solution is adopting aquaponics systems where a synergy can be established between aquaculture and aquatic plants for metal sorption, but the interactions of multiple metals in such aquatic plants are poorly understood. In this study, we investigated the absorption behaviors of Cu(II) and Cd(II) in water by water hyacinth roots in both single- and binary-metal systems. Cu(II) and Cd(II) were individually removed by water hyacinth roots at high efficiency, accompanied with release of protons and cations such as Ca2+ and Mg2+. However, in a binary-metal arrangement, the Cd(II) sorption was significantly inhibited by Cu(II), and the higher sorption affinity of Cu(II) accounted for its competitive sorption advantage. Ionic exchange was identified as a predominant mechanism of the metal sorption by water hyacinth roots, and the amine and oxygen-containing groups are the main binding sites accounting for metal sorption via chelation or coordination. This study highlights the interactive impacts of different metals during their sorption by water hyacinth roots and elucidates the underlying mechanism of metal competitive sorption, which may provide useful implications for optimization of phytoremediation system and development of more sustainable aquaculture industry.
Показать больше [+] Меньше [-]Resource recovery of Eichhornia crassipes as oil superabsorbent
2017
The elastic cellulose-based aerogels (CBAs) with highly porous (99.56%) and low-density (0.0065gcm−1) were prepared using Eichhornia crassipes as cellulose source and polyvinyl alcohol directly as cross-linker via a facile and environment-friendly process. The prepared CBAs exhibited excellent oil/solvent sorption capacities (60.33–152.21gg−1), super-hydrophobicity (water contact angle of 156.7°) as well as remarkable reusability. More importantly, the absorbed oil could be quickly recovered by simple squeezing without significantly structure damage (at least 16 times). All these merits make CBAs very promising materials for oil spillage cleaning.
Показать больше [+] Меньше [-]Sediment clays are trapping heavy metals in urban lakes: An indicator for severe industrial and agricultural influence on coastal wetlands at the Mediterranean coast of Egypt
2020
Keshta, Amr E. | Shaltout, Kamal H. | Baldwin, Andrew H. | Sharaf El-Din, Ahmed A.
Coastal wetlands of the northern coast of Egypt have been impacted with higher loads of runoff, especially the large urbanized lakes of the Nile deltaic coast. Five urban lakes spanning the northern coast of Egypt (from east to west: Bardawil, Manzala, Burullus, Edku, and Mariut) were sampled for quantifying concentrations of heavy metals in their sediment and plant tissues. Sediment and plant tissues in lake Bardawil were the least contaminated, and the other lakes were moderately to highly polluted with Ni, Co, Cr, Pb, Zn, and Cu. Edku had the highest concentrations of Co, Cr, and Cu (19.83, 45.42 and 68.60 mg kg⁻¹, respectively). The proportion of clay in sediment was significantly and positively correlated with Co and Ni in sediment (r = 0.7 and P ≤ 0.001), suggesting an important role of clay cation exchange capacity in the sorption of metals and removing them from the water column.
Показать больше [+] Меньше [-]Trace metals concentration in water hyacinth implicates the saltwater barrage altered hydrography of Kochi backwaters, southwest Coast of India
2021
This study in the Kochi backwaters (KBW) presents the distribution of 9 trace metals (Fe, Zn, Cu, Mn, Ni, Co, Cr, Cd, Pb) in different parts (root, stolon and leaf) of the common water hyacinth Eichhornia crassipes during three different seasons [Pre-Monsoon (PRM), Southwest Monsoon (SWM), and Northeast Monsoon (NEM)]. The hyacinth was collected from 4 sections upstream of the KBW where a saltwater barrage [Thannermukkom Barrage (TB)] prevents saltwater intrusion. Results showed that regardless of seasons, all the trace metals concentration in different parts of Eichhornia varied in the following order: roots > stolon > leaves. All the trace metals except Fe showed their highest concentration during the PRM when TB introduces stagnancy of the water upstream through flow restrictions. Instead, Fe was high during the SWM associated with increased river influx at that time. Overall results showed that the hydrographical alterations of TB upstream of KBW have clear imprints on the trace metals concentrated in the hyacinth Eichhornia crassipes.
Показать больше [+] Меньше [-]Cadmium uptake by the water hyacinth: effects of solution factors
1984
O'Keeffe, D.H. | Hardy, J.K. | Rao, R.A. (Dep. of Chem., Akron Univ., Akron, OH 44325 (USA))